Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anim12 | Unicode version |
Description: Theorem *3.47 of [WhiteheadRussell] p. 113. It was proved by Leibniz, and it evidently pleased him enough to call it 'praeclarum theorema' (splendid theorem). (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
anim12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . 2 | |
2 | simpr 110 | . 2 | |
3 | 1, 2 | anim12d 335 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nfand 1566 equsexd 1727 mo23 2065 euind 2922 reuind 2940 reuss2 3413 opelopabt 4256 reusv3i 4453 rexanre 11197 2sqlem6 14027 bj-stan 14059 |
Copyright terms: Public domain | W3C validator |