![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.43i | GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43i.1 | ⊢ (𝜑 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
pm2.43i | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | pm2.43i.1 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) | |
3 | 1, 2 | mpd 13 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: sylc 62 impbid 129 ibi 176 anidms 397 pm2.13dc 886 hbequid 1524 equidqe 1543 equid 1712 ax10 1728 hbae 1729 vtoclgaf 2817 vtocl2gaf 2819 vtocl3gaf 2821 ifmdc 3589 elinti 3868 copsexg 4259 nlimsucg 4580 tfisi 4601 vtoclr 4689 issref 5026 relresfld 5173 f1o2ndf1 6247 tfrlem9 6338 nndi 6505 mulcanpig 7352 lediv2a 8870 seq3id3 10525 resqrexlemdecn 11039 ndvdssub 11953 nn0seqcvgd 12059 modprm0 12272 fiinopn 13901 xmetunirn 14255 mopnval 14339 ax1hfs 15220 |
Copyright terms: Public domain | W3C validator |