Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.43i | GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43i.1 | ⊢ (𝜑 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
pm2.43i | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | pm2.43i.1 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) | |
3 | 1, 2 | mpd 13 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: sylc 62 impbid 128 ibi 175 anidms 395 pm2.13dc 875 hbequid 1501 equidqe 1520 equid 1689 ax10 1705 hbae 1706 vtoclgaf 2790 vtocl2gaf 2792 vtocl3gaf 2794 ifmdc 3557 elinti 3832 copsexg 4221 nlimsucg 4542 tfisi 4563 vtoclr 4651 issref 4985 relresfld 5132 f1o2ndf1 6192 tfrlem9 6283 nndi 6450 mulcanpig 7272 lediv2a 8786 seq3id3 10438 resqrexlemdecn 10950 ndvdssub 11863 nn0seqcvgd 11969 modprm0 12182 fiinopn 12602 xmetunirn 12958 mopnval 13042 ax1hfs 13910 |
Copyright terms: Public domain | W3C validator |