| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.43i | GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43i.1 | ⊢ (𝜑 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.43i | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | pm2.43i.1 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpd 13 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: sylc 62 impbid 129 ibi 176 anidms 397 pm2.13dc 887 hbequid 1537 equidqe 1556 equid 1725 ax10 1741 hbae 1742 vtoclgaf 2839 vtocl2gaf 2841 vtocl3gaf 2843 ifmdc 3613 elinti 3896 copsexg 4292 nlimsucg 4618 tfisi 4639 vtoclr 4727 ssrelrn 4874 issref 5070 relresfld 5217 f1o2ndf1 6321 tfrlem9 6412 nndi 6579 mulcanpig 7455 lediv2a 8975 seq3id3 10676 resqrexlemdecn 11367 ndvdssub 12285 bitsinv1 12317 nn0seqcvgd 12407 modprm0 12621 mplbasss 14502 fiinopn 14520 xmetunirn 14874 mopnval 14958 plyssc 15255 2lgsoddprm 15634 ax1hfs 16087 |
| Copyright terms: Public domain | W3C validator |