![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.43i | GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43i.1 | ⊢ (𝜑 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
pm2.43i | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | pm2.43i.1 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) | |
3 | 1, 2 | mpd 13 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: sylc 62 impbid 129 ibi 176 anidms 397 pm2.13dc 886 hbequid 1524 equidqe 1543 equid 1712 ax10 1728 hbae 1729 vtoclgaf 2826 vtocl2gaf 2828 vtocl3gaf 2830 ifmdc 3598 elinti 3880 copsexg 4274 nlimsucg 4599 tfisi 4620 vtoclr 4708 issref 5049 relresfld 5196 f1o2ndf1 6283 tfrlem9 6374 nndi 6541 mulcanpig 7397 lediv2a 8916 seq3id3 10598 resqrexlemdecn 11159 ndvdssub 12074 nn0seqcvgd 12182 modprm0 12395 fiinopn 14183 xmetunirn 14537 mopnval 14621 plyssc 14918 2lgsoddprm 15270 ax1hfs 15634 |
Copyright terms: Public domain | W3C validator |