| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.43i | GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43i.1 | ⊢ (𝜑 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.43i | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | pm2.43i.1 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpd 13 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: sylc 62 impbid 129 ibi 176 anidms 397 pm2.13dc 890 hbequid 1559 equidqe 1578 equid 1747 ax10 1763 hbae 1764 vtoclgaf 2866 vtocl2gaf 2868 vtocl3gaf 2870 ifmdc 3645 elinti 3932 copsexg 4330 nlimsucg 4658 tfisi 4679 vtoclr 4767 ssrelrn 4914 issref 5111 relresfld 5258 f1o2ndf1 6380 tfrlem9 6471 nndi 6640 mulcanpig 7530 lediv2a 9050 seq3id3 10754 resqrexlemdecn 11531 ndvdssub 12449 bitsinv1 12481 nn0seqcvgd 12571 modprm0 12785 mplbasss 14668 fiinopn 14686 xmetunirn 15040 mopnval 15124 plyssc 15421 2lgsoddprm 15800 uspgrushgr 15986 uspgrupgr 15987 usgruspgr 15989 usgredg2vlem2 16029 ax1hfs 16472 |
| Copyright terms: Public domain | W3C validator |