| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.43i | GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43i.1 | ⊢ (𝜑 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.43i | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | pm2.43i.1 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpd 13 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: sylc 62 impbid 129 ibi 176 anidms 397 pm2.13dc 886 hbequid 1527 equidqe 1546 equid 1715 ax10 1731 hbae 1732 vtoclgaf 2829 vtocl2gaf 2831 vtocl3gaf 2833 ifmdc 3602 elinti 3884 copsexg 4278 nlimsucg 4603 tfisi 4624 vtoclr 4712 issref 5053 relresfld 5200 f1o2ndf1 6295 tfrlem9 6386 nndi 6553 mulcanpig 7419 lediv2a 8939 seq3id3 10633 resqrexlemdecn 11194 ndvdssub 12112 bitsinv1 12144 nn0seqcvgd 12234 modprm0 12448 fiinopn 14324 xmetunirn 14678 mopnval 14762 plyssc 15059 2lgsoddprm 15438 ax1hfs 15805 |
| Copyright terms: Public domain | W3C validator |