ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.43i GIF version

Theorem pm2.43i 49
Description: Inference absorbing redundant antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.)
Hypothesis
Ref Expression
pm2.43i.1 (𝜑 → (𝜑𝜓))
Assertion
Ref Expression
pm2.43i (𝜑𝜓)

Proof of Theorem pm2.43i
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 pm2.43i.1 . 2 (𝜑 → (𝜑𝜓))
31, 2mpd 13 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  sylc  62  impbid  129  ibi  176  anidms  397  pm2.13dc  886  hbequid  1527  equidqe  1546  equid  1715  ax10  1731  hbae  1732  vtoclgaf  2829  vtocl2gaf  2831  vtocl3gaf  2833  ifmdc  3602  elinti  3884  copsexg  4278  nlimsucg  4603  tfisi  4624  vtoclr  4712  issref  5053  relresfld  5200  f1o2ndf1  6295  tfrlem9  6386  nndi  6553  mulcanpig  7421  lediv2a  8941  seq3id3  10635  resqrexlemdecn  11196  ndvdssub  12114  bitsinv1  12146  nn0seqcvgd  12236  modprm0  12450  fiinopn  14326  xmetunirn  14680  mopnval  14764  plyssc  15061  2lgsoddprm  15440  ax1hfs  15809
  Copyright terms: Public domain W3C validator