| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.43i | GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43i.1 | ⊢ (𝜑 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.43i | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | pm2.43i.1 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpd 13 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: sylc 62 impbid 129 ibi 176 anidms 397 pm2.13dc 889 hbequid 1539 equidqe 1558 equid 1727 ax10 1743 hbae 1744 vtoclgaf 2846 vtocl2gaf 2848 vtocl3gaf 2850 ifmdc 3625 elinti 3911 copsexg 4309 nlimsucg 4635 tfisi 4656 vtoclr 4744 ssrelrn 4891 issref 5087 relresfld 5234 f1o2ndf1 6344 tfrlem9 6435 nndi 6602 mulcanpig 7490 lediv2a 9010 seq3id3 10713 resqrexlemdecn 11489 ndvdssub 12407 bitsinv1 12439 nn0seqcvgd 12529 modprm0 12743 mplbasss 14625 fiinopn 14643 xmetunirn 14997 mopnval 15081 plyssc 15378 2lgsoddprm 15757 uspgrushgr 15943 uspgrupgr 15944 usgruspgr 15946 usgredg2vlem2 15986 ax1hfs 16353 |
| Copyright terms: Public domain | W3C validator |