ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniex2 GIF version

Theorem uniex2 4484
Description: The Axiom of Union using the standard abbreviation for union. Given any set 𝑥, its union 𝑦 exists. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
uniex2 𝑦 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem uniex2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 zfun 4482 . . . 4 𝑦𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦)
2 eluni 3853 . . . . . . 7 (𝑧 𝑥 ↔ ∃𝑦(𝑧𝑦𝑦𝑥))
32imbi1i 238 . . . . . 6 ((𝑧 𝑥𝑧𝑦) ↔ (∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
43albii 1493 . . . . 5 (∀𝑧(𝑧 𝑥𝑧𝑦) ↔ ∀𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
54exbii 1628 . . . 4 (∃𝑦𝑧(𝑧 𝑥𝑧𝑦) ↔ ∃𝑦𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
61, 5mpbir 146 . . 3 𝑦𝑧(𝑧 𝑥𝑧𝑦)
76bm1.3ii 4166 . 2 𝑦𝑧(𝑧𝑦𝑧 𝑥)
8 dfcleq 2199 . . 3 (𝑦 = 𝑥 ↔ ∀𝑧(𝑧𝑦𝑧 𝑥))
98exbii 1628 . 2 (∃𝑦 𝑦 = 𝑥 ↔ ∃𝑦𝑧(𝑧𝑦𝑧 𝑥))
107, 9mpbir 146 1 𝑦 𝑦 = 𝑥
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wex 1515  wcel 2176   cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-uni 3851
This theorem is referenced by:  uniex  4485
  Copyright terms: Public domain W3C validator