![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-un | GIF version |
Description: Axiom of Union. An axiom
of Intuitionistic Zermelo-Fraenkel set theory.
It states that a set 𝑦 exists that includes the union of a
given set
𝑥 i.e. the collection of all members of
the members of 𝑥. The
variant axun2 4435 states that the union itself exists. A
version with the
standard abbreviation for union is uniex2 4436. A version using class
notation is uniex 4437.
This is Axiom 3 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4124), and (c) the order of the conjuncts is swapped (which is equivalent by ancom 266). The union of a class df-uni 3810 should not be confused with the union of two classes df-un 3133. Their relationship is shown in unipr 3823. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
ax-un | ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vz | . . . . . . 7 setvar 𝑧 | |
2 | vw | . . . . . . 7 setvar 𝑤 | |
3 | 1, 2 | wel 2149 | . . . . . 6 wff 𝑧 ∈ 𝑤 |
4 | vx | . . . . . . 7 setvar 𝑥 | |
5 | 2, 4 | wel 2149 | . . . . . 6 wff 𝑤 ∈ 𝑥 |
6 | 3, 5 | wa 104 | . . . . 5 wff (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) |
7 | 6, 2 | wex 1492 | . . . 4 wff ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) |
8 | vy | . . . . 5 setvar 𝑦 | |
9 | 1, 8 | wel 2149 | . . . 4 wff 𝑧 ∈ 𝑦 |
10 | 7, 9 | wi 4 | . . 3 wff (∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
11 | 10, 1 | wal 1351 | . 2 wff ∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
12 | 11, 8 | wex 1492 | 1 wff ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
Colors of variables: wff set class |
This axiom is referenced by: zfun 4434 axun2 4435 bj-axun2 14637 |
Copyright terms: Public domain | W3C validator |