ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-un GIF version

Axiom ax-un 4433
Description: Axiom of Union. An axiom of Intuitionistic Zermelo-Fraenkel set theory. It states that a set 𝑦 exists that includes the union of a given set 𝑥 i.e. the collection of all members of the members of 𝑥. The variant axun2 4435 states that the union itself exists. A version with the standard abbreviation for union is uniex2 4436. A version using class notation is uniex 4437.

This is Axiom 3 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4124), and (c) the order of the conjuncts is swapped (which is equivalent by ancom 266).

The union of a class df-uni 3810 should not be confused with the union of two classes df-un 3133. Their relationship is shown in unipr 3823. (Contributed by NM, 23-Dec-1993.)

Assertion
Ref Expression
ax-un 𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
Distinct variable group:   𝑥,𝑤,𝑦,𝑧

Detailed syntax breakdown of Axiom ax-un
StepHypRef Expression
1 vz . . . . . . 7 setvar 𝑧
2 vw . . . . . . 7 setvar 𝑤
31, 2wel 2149 . . . . . 6 wff 𝑧𝑤
4 vx . . . . . . 7 setvar 𝑥
52, 4wel 2149 . . . . . 6 wff 𝑤𝑥
63, 5wa 104 . . . . 5 wff (𝑧𝑤𝑤𝑥)
76, 2wex 1492 . . . 4 wff 𝑤(𝑧𝑤𝑤𝑥)
8 vy . . . . 5 setvar 𝑦
91, 8wel 2149 . . . 4 wff 𝑧𝑦
107, 9wi 4 . . 3 wff (∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
1110, 1wal 1351 . 2 wff 𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
1211, 8wex 1492 1 wff 𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
Colors of variables: wff set class
This axiom is referenced by:  zfun  4434  axun2  4435  bj-axun2  14637
  Copyright terms: Public domain W3C validator