| Intuitionistic Logic Explorer Theorem List (p. 45 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | csuc 4401 | Extend class notation to include the successor function. |
| class suc 𝐴 | ||
| Definition | df-iord 4402* |
Define the ordinal predicate, which is true for a class that is
transitive and whose elements are transitive. Definition of ordinal in
[Crosilla], p. "Set-theoretic
principles incompatible with
intuitionistic logic".
Some sources will define a notation for ordinal order corresponding to < and ≤ but we just use ∈ and ⊆ respectively. (Contributed by Jim Kingdon, 10-Oct-2018.) Use its alias dford3 4403 instead for naming consistency with set.mm. (New usage is discouraged.) |
| ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | ||
| Theorem | dford3 4403* | Alias for df-iord 4402. Use it instead of df-iord 4402 for naming consistency with set.mm. (Contributed by Jim Kingdon, 10-Oct-2018.) |
| ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | ||
| Definition | df-on 4404 | Define the class of all ordinal numbers. Definition 7.11 of [TakeutiZaring] p. 38. (Contributed by NM, 5-Jun-1994.) |
| ⊢ On = {𝑥 ∣ Ord 𝑥} | ||
| Definition | df-ilim 4405 | Define the limit ordinal predicate, which is true for an ordinal that has the empty set as an element and is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42, and then changes 𝐴 ≠ ∅ to ∅ ∈ 𝐴 (which would be equivalent given the law of the excluded middle, but which is not for us). (Contributed by Jim Kingdon, 11-Nov-2018.) Use its alias dflim2 4406 instead for naming consistency with set.mm. (New usage is discouraged.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) | ||
| Theorem | dflim2 4406 | Alias for df-ilim 4405. Use it instead of df-ilim 4405 for naming consistency with set.mm. (Contributed by NM, 4-Nov-2004.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) | ||
| Definition | df-suc 4407 | Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1". Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 4448). Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.) |
| ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | ||
| Theorem | ordeq 4408 | Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
| ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | ||
| Theorem | elong 4409 | An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) | ||
| Theorem | elon 4410 | An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ On ↔ Ord 𝐴) | ||
| Theorem | eloni 4411 | An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ On → Ord 𝐴) | ||
| Theorem | elon2 4412 | An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.) |
| ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | ||
| Theorem | limeq 4413 | Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) | ||
| Theorem | ordtr 4414 | An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| ⊢ (Ord 𝐴 → Tr 𝐴) | ||
| Theorem | ordelss 4415 | An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | ||
| Theorem | trssord 4416 | A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.) |
| ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) | ||
| Theorem | ordelord 4417 | An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | ||
| Theorem | tron 4418 | The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.) |
| ⊢ Tr On | ||
| Theorem | ordelon 4419 | An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | ||
| Theorem | onelon 4420 | An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | ||
| Theorem | ordin 4421 | The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | ||
| Theorem | onin 4422 | The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) | ||
| Theorem | onelss 4423 | An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | ||
| Theorem | ordtr1 4424 | Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
| ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
| Theorem | ontr1 4425 | Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. (Contributed by NM, 11-Aug-1994.) |
| ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
| Theorem | onintss 4426* | If a property is true for an ordinal number, then the minimum ordinal number for which it is true is smaller or equal. Theorem Schema 61 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ On → (𝜓 → ∩ {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴)) | ||
| Theorem | ord0 4427 | The empty set is an ordinal class. (Contributed by NM, 11-May-1994.) |
| ⊢ Ord ∅ | ||
| Theorem | 0elon 4428 | The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
| ⊢ ∅ ∈ On | ||
| Theorem | inton 4429 | The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.) |
| ⊢ ∩ On = ∅ | ||
| Theorem | nlim0 4430 | The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ¬ Lim ∅ | ||
| Theorem | limord 4431 | A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
| ⊢ (Lim 𝐴 → Ord 𝐴) | ||
| Theorem | limuni 4432 | A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.) |
| ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | ||
| Theorem | limuni2 4433 | The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.) |
| ⊢ (Lim 𝐴 → Lim ∪ 𝐴) | ||
| Theorem | 0ellim 4434 | A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.) |
| ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) | ||
| Theorem | limelon 4435 | A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) | ||
| Theorem | onn0 4436 | The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.) |
| ⊢ On ≠ ∅ | ||
| Theorem | onm 4437 | The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.) |
| ⊢ ∃𝑥 𝑥 ∈ On | ||
| Theorem | suceq 4438 | Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) | ||
| Theorem | elsuci 4439 | Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. (Contributed by NM, 6-Jun-1994.) |
| ⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | ||
| Theorem | elsucg 4440 | Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | elsuc2g 4441 | Variant of membership in a successor, requiring that 𝐵 rather than 𝐴 be a set. (Contributed by NM, 28-Oct-2003.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | elsuc 4442 | Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | ||
| Theorem | elsuc2 4443 | Membership in a successor. (Contributed by NM, 15-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ suc 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | ||
| Theorem | nfsuc 4444 | Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 suc 𝐴 | ||
| Theorem | elelsuc 4445 | Membership in a successor. (Contributed by NM, 20-Jun-1998.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) | ||
| Theorem | sucel 4446* | Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.) |
| ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) | ||
| Theorem | suc0 4447 | The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
| ⊢ suc ∅ = {∅} | ||
| Theorem | sucprc 4448 | A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
| ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | ||
| Theorem | unisuc 4449 | A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) | ||
| Theorem | unisucg 4450 | A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | ||
| Theorem | sssucid 4451 | A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
| ⊢ 𝐴 ⊆ suc 𝐴 | ||
| Theorem | sucidg 4452 | Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | ||
| Theorem | sucid 4453 | A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ suc 𝐴 | ||
| Theorem | nsuceq0g 4454 | No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ≠ ∅) | ||
| Theorem | eqelsuc 4455 | A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) | ||
| Theorem | iunsuc 4456* | Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) | ||
| Theorem | suctr 4457 | The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009.) |
| ⊢ (Tr 𝐴 → Tr suc 𝐴) | ||
| Theorem | trsuc 4458 | A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | ||
| Theorem | trsucss 4459 | A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.) |
| ⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) | ||
| Theorem | sucssel 4460 | A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) | ||
| Theorem | orduniss 4461 | An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.) |
| ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) | ||
| Theorem | onordi 4462 | An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ Ord 𝐴 | ||
| Theorem | ontrci 4463 | An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ Tr 𝐴 | ||
| Theorem | oneli 4464 | A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ On) | ||
| Theorem | onelssi 4465 | A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) | ||
| Theorem | onelini 4466 | An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) | ||
| Theorem | oneluni 4467 | An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∪ 𝐵) = 𝐴) | ||
| Theorem | onunisuci 4468 | An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ ∪ suc 𝐴 = 𝐴 | ||
| Axiom | ax-un 4469* |
Axiom of Union. An axiom of Intuitionistic Zermelo-Fraenkel set theory.
It states that a set 𝑦 exists that includes the union of a
given set
𝑥 i.e. the collection of all members of
the members of 𝑥. The
variant axun2 4471 states that the union itself exists. A
version with the
standard abbreviation for union is uniex2 4472. A version using class
notation is uniex 4473.
This is Axiom 3 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4155), and (c) the order of the conjuncts is swapped (which is equivalent by ancom 266). The union of a class df-uni 3841 should not be confused with the union of two classes df-un 3161. Their relationship is shown in unipr 3854. (Contributed by NM, 23-Dec-1993.) |
| ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | zfun 4470* | Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) |
| ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
| Theorem | axun2 4471* | A variant of the Axiom of Union ax-un 4469. For any set 𝑥, there exists a set 𝑦 whose members are exactly the members of the members of 𝑥 i.e. the union of 𝑥. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) | ||
| Theorem | uniex2 4472* | The Axiom of Union using the standard abbreviation for union. Given any set 𝑥, its union 𝑦 exists. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | ||
| Theorem | uniex 4473 | The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 2769), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∪ 𝐴 ∈ V | ||
| Theorem | vuniex 4474 | The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) |
| ⊢ ∪ 𝑥 ∈ V | ||
| Theorem | uniexg 4475 | The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | ||
| Theorem | uniexd 4476 | Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ V) | ||
| Theorem | unex 4477 | The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∪ 𝐵) ∈ V | ||
| Theorem | unexb 4478 | Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.) |
| ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | unexg 4479 | A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | tpexg 4480 | An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
| ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → {𝐴, 𝐵, 𝐶} ∈ V) | ||
| Theorem | unisn3 4481* | Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.) |
| ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) | ||
| Theorem | abnexg 4482* | Sufficient condition for a class abstraction to be a proper class. The class 𝐹 can be thought of as an expression in 𝑥 and the abstraction appearing in the statement as the class of values 𝐹 as 𝑥 varies through 𝐴. Assuming the antecedents, if that class is a set, then so is the "domain" 𝐴. The converse holds without antecedent, see abrexexg 6184. Note that the second antecedent ∀𝑥 ∈ 𝐴𝑥 ∈ 𝐹 cannot be translated to 𝐴 ⊆ 𝐹 since 𝐹 may depend on 𝑥. In applications, one may take 𝐹 = {𝑥} or 𝐹 = 𝒫 𝑥 (see snnex 4484 and pwnex 4485 respectively, proved from abnex 4483, which is a consequence of abnexg 4482 with 𝐴 = V). (Contributed by BJ, 2-Dec-2021.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → 𝐴 ∈ V)) | ||
| Theorem | abnex 4483* | Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 4484 and pwnex 4485. See the comment of abnexg 4482. (Contributed by BJ, 2-May-2021.) |
| ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V) | ||
| Theorem | snnex 4484* | The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) |
| ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V | ||
| Theorem | pwnex 4485* | The class of all power sets is a proper class. See also snnex 4484. (Contributed by BJ, 2-May-2021.) |
| ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V | ||
| Theorem | opeluu 4486 | Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (𝐴 ∈ ∪ ∪ 𝐶 ∧ 𝐵 ∈ ∪ ∪ 𝐶)) | ||
| Theorem | uniuni 4487* | Expression for double union that moves union into a class builder. (Contributed by FL, 28-May-2007.) |
| ⊢ ∪ ∪ 𝐴 = ∪ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)} | ||
| Theorem | eusv1 4488* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥 𝑦 = 𝐴) | ||
| Theorem | eusvnf 4489* | Even if 𝑥 is free in 𝐴, it is effectively bound when 𝐴(𝑥) is single-valued. (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | ||
| Theorem | eusvnfb 4490* | Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) | ||
| Theorem | eusv2i 4491* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) | ||
| Theorem | eusv2nf 4492* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by Mario Carneiro, 18-Nov-2016.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) | ||
| Theorem | eusv2 4493* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴) | ||
| Theorem | reusv1 4494* | Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| ⊢ (∃𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
| Theorem | reusv3i 4495* | Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) | ||
| Theorem | reusv3 4496* | Two ways to express single-valuedness of a class expression 𝐶(𝑦). See reusv1 4494 for the connection to uniqueness. (Contributed by NM, 27-Dec-2012.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) ⇒ ⊢ (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝐶 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
| Theorem | alxfr 4497* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 18-Feb-2007.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((∀𝑦 𝐴 ∈ 𝐵 ∧ ∀𝑥∃𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
| Theorem | ralxfrd 4498* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rexxfrd 4499* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | ralxfr2d 4500* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |