| Intuitionistic Logic Explorer Theorem List (p. 45 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | frirrg 4401 | A well-founded relation is irreflexive. This is the case where 𝐴 exists. (Contributed by Jim Kingdon, 21-Sep-2021.) |
| ⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | ||
| Theorem | fr0 4402 | Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.) |
| ⊢ 𝑅 Fr ∅ | ||
| Theorem | frind 4403* | Induction over a well-founded set. (Contributed by Jim Kingdon, 28-Sep-2021.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝜓) → 𝜑)) & ⊢ (𝜒 → 𝑅 Fr 𝐴) & ⊢ (𝜒 → 𝐴 ∈ 𝑉) ⇒ ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐴) → 𝜑) | ||
| Theorem | efrirr 4404 | Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
| ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) | ||
| Theorem | tz7.2 4405 | Similar to Theorem 7.2 of [TakeutiZaring] p. 35, of except that the Axiom of Regularity is not required due to antecedent E Fr 𝐴. (Contributed by NM, 4-May-1994.) |
| ⊢ ((Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) | ||
| Theorem | nfwe 4406 | Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝑅 We 𝐴 | ||
| Theorem | weeq1 4407 | Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.) |
| ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) | ||
| Theorem | weeq2 4408 | Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.) |
| ⊢ (𝐴 = 𝐵 → (𝑅 We 𝐴 ↔ 𝑅 We 𝐵)) | ||
| Theorem | wefr 4409 | A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.) |
| ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | ||
| Theorem | wepo 4410 | A well-ordering is a partial ordering. (Contributed by Jim Kingdon, 23-Sep-2021.) |
| ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑅 Po 𝐴) | ||
| Theorem | wetrep 4411* | An epsilon well-ordering is a transitive relation. (Contributed by NM, 22-Apr-1994.) |
| ⊢ (( E We 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧)) | ||
| Theorem | we0 4412 | Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.) |
| ⊢ 𝑅 We ∅ | ||
| Syntax | word 4413 | Extend the definition of a wff to include the ordinal predicate. |
| wff Ord 𝐴 | ||
| Syntax | con0 4414 | Extend the definition of a class to include the class of all ordinal numbers. (The 0 in the name prevents creating a file called con.html, which causes problems in Windows.) |
| class On | ||
| Syntax | wlim 4415 | Extend the definition of a wff to include the limit ordinal predicate. |
| wff Lim 𝐴 | ||
| Syntax | csuc 4416 | Extend class notation to include the successor function. |
| class suc 𝐴 | ||
| Definition | df-iord 4417* |
Define the ordinal predicate, which is true for a class that is
transitive and whose elements are transitive. Definition of ordinal in
[Crosilla], p. "Set-theoretic
principles incompatible with
intuitionistic logic".
Some sources will define a notation for ordinal order corresponding to < and ≤ but we just use ∈ and ⊆ respectively. (Contributed by Jim Kingdon, 10-Oct-2018.) Use its alias dford3 4418 instead for naming consistency with set.mm. (New usage is discouraged.) |
| ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | ||
| Theorem | dford3 4418* | Alias for df-iord 4417. Use it instead of df-iord 4417 for naming consistency with set.mm. (Contributed by Jim Kingdon, 10-Oct-2018.) |
| ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | ||
| Definition | df-on 4419 | Define the class of all ordinal numbers. Definition 7.11 of [TakeutiZaring] p. 38. (Contributed by NM, 5-Jun-1994.) |
| ⊢ On = {𝑥 ∣ Ord 𝑥} | ||
| Definition | df-ilim 4420 | Define the limit ordinal predicate, which is true for an ordinal that has the empty set as an element and is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42, and then changes 𝐴 ≠ ∅ to ∅ ∈ 𝐴 (which would be equivalent given the law of the excluded middle, but which is not for us). (Contributed by Jim Kingdon, 11-Nov-2018.) Use its alias dflim2 4421 instead for naming consistency with set.mm. (New usage is discouraged.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) | ||
| Theorem | dflim2 4421 | Alias for df-ilim 4420. Use it instead of df-ilim 4420 for naming consistency with set.mm. (Contributed by NM, 4-Nov-2004.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) | ||
| Definition | df-suc 4422 | Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1". Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 4463). Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.) |
| ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | ||
| Theorem | ordeq 4423 | Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
| ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | ||
| Theorem | elong 4424 | An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ On ↔ Ord 𝐴)) | ||
| Theorem | elon 4425 | An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ On ↔ Ord 𝐴) | ||
| Theorem | eloni 4426 | An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ On → Ord 𝐴) | ||
| Theorem | elon2 4427 | An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.) |
| ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | ||
| Theorem | limeq 4428 | Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) | ||
| Theorem | ordtr 4429 | An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| ⊢ (Ord 𝐴 → Tr 𝐴) | ||
| Theorem | ordelss 4430 | An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | ||
| Theorem | trssord 4431 | A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.) |
| ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) | ||
| Theorem | ordelord 4432 | An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | ||
| Theorem | tron 4433 | The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.) |
| ⊢ Tr On | ||
| Theorem | ordelon 4434 | An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | ||
| Theorem | onelon 4435 | An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | ||
| Theorem | ordin 4436 | The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | ||
| Theorem | onin 4437 | The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) | ||
| Theorem | onelss 4438 | An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | ||
| Theorem | ordtr1 4439 | Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
| ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
| Theorem | ontr1 4440 | Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. (Contributed by NM, 11-Aug-1994.) |
| ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
| Theorem | onintss 4441* | If a property is true for an ordinal number, then the minimum ordinal number for which it is true is smaller or equal. Theorem Schema 61 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ On → (𝜓 → ∩ {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴)) | ||
| Theorem | ord0 4442 | The empty set is an ordinal class. (Contributed by NM, 11-May-1994.) |
| ⊢ Ord ∅ | ||
| Theorem | 0elon 4443 | The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
| ⊢ ∅ ∈ On | ||
| Theorem | inton 4444 | The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.) |
| ⊢ ∩ On = ∅ | ||
| Theorem | nlim0 4445 | The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ¬ Lim ∅ | ||
| Theorem | limord 4446 | A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
| ⊢ (Lim 𝐴 → Ord 𝐴) | ||
| Theorem | limuni 4447 | A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.) |
| ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | ||
| Theorem | limuni2 4448 | The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.) |
| ⊢ (Lim 𝐴 → Lim ∪ 𝐴) | ||
| Theorem | 0ellim 4449 | A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.) |
| ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) | ||
| Theorem | limelon 4450 | A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) | ||
| Theorem | onn0 4451 | The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.) |
| ⊢ On ≠ ∅ | ||
| Theorem | onm 4452 | The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.) |
| ⊢ ∃𝑥 𝑥 ∈ On | ||
| Theorem | suceq 4453 | Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) | ||
| Theorem | elsuci 4454 | Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. (Contributed by NM, 6-Jun-1994.) |
| ⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | ||
| Theorem | elsucg 4455 | Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | elsuc2g 4456 | Variant of membership in a successor, requiring that 𝐵 rather than 𝐴 be a set. (Contributed by NM, 28-Oct-2003.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | elsuc 4457 | Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | ||
| Theorem | elsuc2 4458 | Membership in a successor. (Contributed by NM, 15-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ suc 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | ||
| Theorem | nfsuc 4459 | Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 suc 𝐴 | ||
| Theorem | elelsuc 4460 | Membership in a successor. (Contributed by NM, 20-Jun-1998.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) | ||
| Theorem | sucel 4461* | Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.) |
| ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) | ||
| Theorem | suc0 4462 | The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
| ⊢ suc ∅ = {∅} | ||
| Theorem | sucprc 4463 | A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
| ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | ||
| Theorem | unisuc 4464 | A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) | ||
| Theorem | unisucg 4465 | A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | ||
| Theorem | sssucid 4466 | A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
| ⊢ 𝐴 ⊆ suc 𝐴 | ||
| Theorem | sucidg 4467 | Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | ||
| Theorem | sucid 4468 | A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ suc 𝐴 | ||
| Theorem | nsuceq0g 4469 | No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ≠ ∅) | ||
| Theorem | eqelsuc 4470 | A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) | ||
| Theorem | iunsuc 4471* | Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) | ||
| Theorem | suctr 4472 | The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009.) |
| ⊢ (Tr 𝐴 → Tr suc 𝐴) | ||
| Theorem | trsuc 4473 | A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | ||
| Theorem | trsucss 4474 | A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.) |
| ⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) | ||
| Theorem | sucssel 4475 | A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) | ||
| Theorem | orduniss 4476 | An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.) |
| ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) | ||
| Theorem | onordi 4477 | An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ Ord 𝐴 | ||
| Theorem | ontrci 4478 | An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ Tr 𝐴 | ||
| Theorem | oneli 4479 | A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ On) | ||
| Theorem | onelssi 4480 | A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) | ||
| Theorem | onelini 4481 | An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) | ||
| Theorem | oneluni 4482 | An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∪ 𝐵) = 𝐴) | ||
| Theorem | onunisuci 4483 | An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ ∪ suc 𝐴 = 𝐴 | ||
| Axiom | ax-un 4484* |
Axiom of Union. An axiom of Intuitionistic Zermelo-Fraenkel set theory.
It states that a set 𝑦 exists that includes the union of a
given set
𝑥 i.e. the collection of all members of
the members of 𝑥. The
variant axun2 4486 states that the union itself exists. A
version with the
standard abbreviation for union is uniex2 4487. A version using class
notation is uniex 4488.
This is Axiom 3 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4169), and (c) the order of the conjuncts is swapped (which is equivalent by ancom 266). The union of a class df-uni 3853 should not be confused with the union of two classes df-un 3171. Their relationship is shown in unipr 3866. (Contributed by NM, 23-Dec-1993.) |
| ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | zfun 4485* | Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) |
| ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
| Theorem | axun2 4486* | A variant of the Axiom of Union ax-un 4484. For any set 𝑥, there exists a set 𝑦 whose members are exactly the members of the members of 𝑥 i.e. the union of 𝑥. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) | ||
| Theorem | uniex2 4487* | The Axiom of Union using the standard abbreviation for union. Given any set 𝑥, its union 𝑦 exists. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | ||
| Theorem | uniex 4488 | The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 2779), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∪ 𝐴 ∈ V | ||
| Theorem | vuniex 4489 | The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) |
| ⊢ ∪ 𝑥 ∈ V | ||
| Theorem | uniexg 4490 | The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | ||
| Theorem | uniexd 4491 | Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ V) | ||
| Theorem | unex 4492 | The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∪ 𝐵) ∈ V | ||
| Theorem | unexb 4493 | Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.) |
| ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | unexg 4494 | A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | tpexg 4495 | An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
| ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → {𝐴, 𝐵, 𝐶} ∈ V) | ||
| Theorem | unisn3 4496* | Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.) |
| ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) | ||
| Theorem | abnexg 4497* | Sufficient condition for a class abstraction to be a proper class. The class 𝐹 can be thought of as an expression in 𝑥 and the abstraction appearing in the statement as the class of values 𝐹 as 𝑥 varies through 𝐴. Assuming the antecedents, if that class is a set, then so is the "domain" 𝐴. The converse holds without antecedent, see abrexexg 6210. Note that the second antecedent ∀𝑥 ∈ 𝐴𝑥 ∈ 𝐹 cannot be translated to 𝐴 ⊆ 𝐹 since 𝐹 may depend on 𝑥. In applications, one may take 𝐹 = {𝑥} or 𝐹 = 𝒫 𝑥 (see snnex 4499 and pwnex 4500 respectively, proved from abnex 4498, which is a consequence of abnexg 4497 with 𝐴 = V). (Contributed by BJ, 2-Dec-2021.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → 𝐴 ∈ V)) | ||
| Theorem | abnex 4498* | Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 4499 and pwnex 4500. See the comment of abnexg 4497. (Contributed by BJ, 2-May-2021.) |
| ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V) | ||
| Theorem | snnex 4499* | The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) |
| ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V | ||
| Theorem | pwnex 4500* | The class of all power sets is a proper class. See also snnex 4499. (Contributed by BJ, 2-May-2021.) |
| ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |