| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > zfun | GIF version | ||
| Description: Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) | 
| Ref | Expression | 
|---|---|
| zfun | ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-un 4468 | . 2 ⊢ ∃𝑥∀𝑦(∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) | |
| 2 | elequ2 2172 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥)) | |
| 3 | elequ1 2171 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧)) | |
| 4 | 2, 3 | anbi12d 473 | . . . . . 6 ⊢ (𝑤 = 𝑥 → ((𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) ↔ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧))) | 
| 5 | 4 | cbvexv 1933 | . . . . 5 ⊢ (∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) ↔ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧)) | 
| 6 | 5 | imbi1i 238 | . . . 4 ⊢ ((∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | 
| 7 | 6 | albii 1484 | . . 3 ⊢ (∀𝑦(∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | 
| 8 | 7 | exbii 1619 | . 2 ⊢ (∃𝑥∀𝑦(∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | 
| 9 | 1, 8 | mpbi 145 | 1 ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-13 2169 ax-14 2170 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: uniex2 4471 bj-uniex2 15562 | 
| Copyright terms: Public domain | W3C validator |