| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.9rmv | GIF version | ||
| Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.) |
| Ref | Expression |
|---|---|
| r19.9rmv | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 | . . 3 ⊢ (𝑎 = 𝑦 → (𝑎 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 2 | 1 | cbvexv 1933 | . 2 ⊢ (∃𝑎 𝑎 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ 𝐴) |
| 3 | eleq1 2259 | . . . 4 ⊢ (𝑎 = 𝑥 → (𝑎 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 4 | 3 | cbvexv 1933 | . . 3 ⊢ (∃𝑎 𝑎 ∈ 𝐴 ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| 5 | df-rex 2481 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 19.41v 1917 | . . . . 5 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 7 | 5, 6 | bitri 184 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 8 | 7 | baibr 921 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
| 9 | 4, 8 | sylbi 121 | . 2 ⊢ (∃𝑎 𝑎 ∈ 𝐴 → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
| 10 | 2, 9 | sylbir 135 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1506 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-rex 2481 |
| This theorem is referenced by: r19.45mv 3544 r19.44mv 3545 iunconstm 3924 fconstfvm 5780 frecabcl 6457 ltexprlemloc 7674 lcmgcdlem 12245 dvdsr02 13661 |
| Copyright terms: Public domain | W3C validator |