![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.9rmv | GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.) |
Ref | Expression |
---|---|
r19.9rmv | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2240 | . . 3 ⊢ (𝑎 = 𝑦 → (𝑎 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
2 | 1 | cbvexv 1918 | . 2 ⊢ (∃𝑎 𝑎 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ 𝐴) |
3 | eleq1 2240 | . . . 4 ⊢ (𝑎 = 𝑥 → (𝑎 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
4 | 3 | cbvexv 1918 | . . 3 ⊢ (∃𝑎 𝑎 ∈ 𝐴 ↔ ∃𝑥 𝑥 ∈ 𝐴) |
5 | df-rex 2461 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 19.41v 1902 | . . . . 5 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ 𝜑)) | |
7 | 5, 6 | bitri 184 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ 𝜑)) |
8 | 7 | baibr 920 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
9 | 4, 8 | sylbi 121 | . 2 ⊢ (∃𝑎 𝑎 ∈ 𝐴 → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
10 | 2, 9 | sylbir 135 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1492 ∈ wcel 2148 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 df-rex 2461 |
This theorem is referenced by: r19.45mv 3518 r19.44mv 3519 iunconstm 3896 fconstfvm 5736 frecabcl 6402 ltexprlemloc 7608 lcmgcdlem 12079 dvdsr02 13279 |
Copyright terms: Public domain | W3C validator |