Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.9rmv | GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.) |
Ref | Expression |
---|---|
r19.9rmv | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . . 3 ⊢ (𝑎 = 𝑦 → (𝑎 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
2 | 1 | cbvexv 1906 | . 2 ⊢ (∃𝑎 𝑎 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ 𝐴) |
3 | eleq1 2229 | . . . 4 ⊢ (𝑎 = 𝑥 → (𝑎 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
4 | 3 | cbvexv 1906 | . . 3 ⊢ (∃𝑎 𝑎 ∈ 𝐴 ↔ ∃𝑥 𝑥 ∈ 𝐴) |
5 | df-rex 2450 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 19.41v 1890 | . . . . 5 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ 𝜑)) | |
7 | 5, 6 | bitri 183 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ 𝜑)) |
8 | 7 | baibr 910 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
9 | 4, 8 | sylbi 120 | . 2 ⊢ (∃𝑎 𝑎 ∈ 𝐴 → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
10 | 2, 9 | sylbir 134 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∃wex 1480 ∈ wcel 2136 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 df-rex 2450 |
This theorem is referenced by: r19.45mv 3502 r19.44mv 3503 iunconstm 3874 fconstfvm 5703 frecabcl 6367 ltexprlemloc 7548 lcmgcdlem 12009 |
Copyright terms: Public domain | W3C validator |