ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlemfi GIF version

Theorem eulerthlemfi 12091
Description: Lemma for eulerth 12096. The set 𝑆 is finite. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.)
Hypotheses
Ref Expression
eulerth.1 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
eulerth.2 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
Assertion
Ref Expression
eulerthlemfi (𝜑𝑆 ∈ Fin)
Distinct variable group:   𝑦,𝑁
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝑆(𝑦)

Proof of Theorem eulerthlemfi
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 0z 9172 . . 3 0 ∈ ℤ
2 eulerth.1 . . . . 5 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
32simp1d 994 . . . 4 (𝜑𝑁 ∈ ℕ)
43nnzd 9279 . . 3 (𝜑𝑁 ∈ ℤ)
5 fzofig 10324 . . 3 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^𝑁) ∈ Fin)
61, 4, 5sylancr 411 . 2 (𝜑 → (0..^𝑁) ∈ Fin)
7 eulerth.2 . . . 4 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
8 ssrab2 3213 . . . 4 {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁)
97, 8eqsstri 3160 . . 3 𝑆 ⊆ (0..^𝑁)
109a1i 9 . 2 (𝜑𝑆 ⊆ (0..^𝑁))
11 elfzoelz 10039 . . . . . . . 8 (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℤ)
1211adantl 275 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℤ)
134adantr 274 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
1412, 13gcdcld 11843 . . . . . 6 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℕ0)
1514nn0zd 9278 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℤ)
16 1zzd 9188 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → 1 ∈ ℤ)
17 zdceq 9233 . . . . 5 (((𝑗 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝑗 gcd 𝑁) = 1)
1815, 16, 17syl2anc 409 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → DECID (𝑗 gcd 𝑁) = 1)
19 oveq1 5828 . . . . . . . . 9 (𝑦 = 𝑗 → (𝑦 gcd 𝑁) = (𝑗 gcd 𝑁))
2019eqeq1d 2166 . . . . . . . 8 (𝑦 = 𝑗 → ((𝑦 gcd 𝑁) = 1 ↔ (𝑗 gcd 𝑁) = 1))
2120, 7elrab2 2871 . . . . . . 7 (𝑗𝑆 ↔ (𝑗 ∈ (0..^𝑁) ∧ (𝑗 gcd 𝑁) = 1))
2221baibr 906 . . . . . 6 (𝑗 ∈ (0..^𝑁) → ((𝑗 gcd 𝑁) = 1 ↔ 𝑗𝑆))
2322dcbid 824 . . . . 5 (𝑗 ∈ (0..^𝑁) → (DECID (𝑗 gcd 𝑁) = 1 ↔ DECID 𝑗𝑆))
2423adantl 275 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → (DECID (𝑗 gcd 𝑁) = 1 ↔ DECID 𝑗𝑆))
2518, 24mpbid 146 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → DECID 𝑗𝑆)
2625ralrimiva 2530 . 2 (𝜑 → ∀𝑗 ∈ (0..^𝑁)DECID 𝑗𝑆)
27 ssfidc 6876 . 2 (((0..^𝑁) ∈ Fin ∧ 𝑆 ⊆ (0..^𝑁) ∧ ∀𝑗 ∈ (0..^𝑁)DECID 𝑗𝑆) → 𝑆 ∈ Fin)
286, 10, 26, 27syl3anc 1220 1 (𝜑𝑆 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 820  w3a 963   = wceq 1335  wcel 2128  wral 2435  {crab 2439  wss 3102  (class class class)co 5821  Fincfn 6682  0cc0 7726  1c1 7727  cn 8827  cz 9161  ..^cfzo 10034   gcd cgcd 11821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-1o 6360  df-er 6477  df-en 6683  df-fin 6685  df-sup 6924  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-fz 9906  df-fzo 10035  df-fl 10162  df-mod 10215  df-seqfrec 10338  df-exp 10412  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-dvds 11677  df-gcd 11822
This theorem is referenced by:  eulerthlemh  12094  eulerth  12096
  Copyright terms: Public domain W3C validator