| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eulerthlemfi | GIF version | ||
| Description: Lemma for eulerth 12721. The set 𝑆 is finite. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.) |
| Ref | Expression |
|---|---|
| eulerth.1 | ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) |
| eulerth.2 | ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} |
| Ref | Expression |
|---|---|
| eulerthlemfi | ⊢ (𝜑 → 𝑆 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9425 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | eulerth.1 | . . . . 5 ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) | |
| 3 | 2 | simp1d 1014 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 4 | 3 | nnzd 9536 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 5 | fzofig 10621 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^𝑁) ∈ Fin) | |
| 6 | 1, 4, 5 | sylancr 414 | . 2 ⊢ (𝜑 → (0..^𝑁) ∈ Fin) |
| 7 | eulerth.2 | . . . 4 ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} | |
| 8 | ssrab2 3289 | . . . 4 ⊢ {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁) | |
| 9 | 7, 8 | eqsstri 3236 | . . 3 ⊢ 𝑆 ⊆ (0..^𝑁) |
| 10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → 𝑆 ⊆ (0..^𝑁)) |
| 11 | elfzoelz 10311 | . . . . . . . 8 ⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℤ) | |
| 12 | 11 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℤ) |
| 13 | 4 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ) |
| 14 | 12, 13 | gcdcld 12455 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℕ0) |
| 15 | 14 | nn0zd 9535 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℤ) |
| 16 | 1zzd 9441 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 1 ∈ ℤ) | |
| 17 | zdceq 9490 | . . . . 5 ⊢ (((𝑗 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝑗 gcd 𝑁) = 1) | |
| 18 | 15, 16, 17 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → DECID (𝑗 gcd 𝑁) = 1) |
| 19 | oveq1 5981 | . . . . . . . . 9 ⊢ (𝑦 = 𝑗 → (𝑦 gcd 𝑁) = (𝑗 gcd 𝑁)) | |
| 20 | 19 | eqeq1d 2218 | . . . . . . . 8 ⊢ (𝑦 = 𝑗 → ((𝑦 gcd 𝑁) = 1 ↔ (𝑗 gcd 𝑁) = 1)) |
| 21 | 20, 7 | elrab2 2942 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑆 ↔ (𝑗 ∈ (0..^𝑁) ∧ (𝑗 gcd 𝑁) = 1)) |
| 22 | 21 | baibr 924 | . . . . . 6 ⊢ (𝑗 ∈ (0..^𝑁) → ((𝑗 gcd 𝑁) = 1 ↔ 𝑗 ∈ 𝑆)) |
| 23 | 22 | dcbid 842 | . . . . 5 ⊢ (𝑗 ∈ (0..^𝑁) → (DECID (𝑗 gcd 𝑁) = 1 ↔ DECID 𝑗 ∈ 𝑆)) |
| 24 | 23 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (DECID (𝑗 gcd 𝑁) = 1 ↔ DECID 𝑗 ∈ 𝑆)) |
| 25 | 18, 24 | mpbid 147 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → DECID 𝑗 ∈ 𝑆) |
| 26 | 25 | ralrimiva 2583 | . 2 ⊢ (𝜑 → ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ 𝑆) |
| 27 | ssfidc 7067 | . 2 ⊢ (((0..^𝑁) ∈ Fin ∧ 𝑆 ⊆ (0..^𝑁) ∧ ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ 𝑆) → 𝑆 ∈ Fin) | |
| 28 | 6, 10, 26, 27 | syl3anc 1252 | 1 ⊢ (𝜑 → 𝑆 ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 838 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ∀wral 2488 {crab 2492 ⊆ wss 3177 (class class class)co 5974 Fincfn 6857 0cc0 7967 1c1 7968 ℕcn 9078 ℤcz 9414 ..^cfzo 10306 gcd cgcd 12440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-1o 6532 df-er 6650 df-en 6858 df-fin 6860 df-sup 7119 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fz 10173 df-fzo 10307 df-fl 10457 df-mod 10512 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-dvds 12265 df-gcd 12441 |
| This theorem is referenced by: eulerthlemh 12719 eulerth 12721 |
| Copyright terms: Public domain | W3C validator |