Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eulerthlemfi | GIF version |
Description: Lemma for eulerth 12112. The set 𝑆 is finite. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.) |
Ref | Expression |
---|---|
eulerth.1 | ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) |
eulerth.2 | ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} |
Ref | Expression |
---|---|
eulerthlemfi | ⊢ (𝜑 → 𝑆 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9179 | . . 3 ⊢ 0 ∈ ℤ | |
2 | eulerth.1 | . . . . 5 ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) | |
3 | 2 | simp1d 994 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
4 | 3 | nnzd 9286 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
5 | fzofig 10335 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^𝑁) ∈ Fin) | |
6 | 1, 4, 5 | sylancr 411 | . 2 ⊢ (𝜑 → (0..^𝑁) ∈ Fin) |
7 | eulerth.2 | . . . 4 ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} | |
8 | ssrab2 3213 | . . . 4 ⊢ {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁) | |
9 | 7, 8 | eqsstri 3160 | . . 3 ⊢ 𝑆 ⊆ (0..^𝑁) |
10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → 𝑆 ⊆ (0..^𝑁)) |
11 | elfzoelz 10050 | . . . . . . . 8 ⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℤ) | |
12 | 11 | adantl 275 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℤ) |
13 | 4 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ) |
14 | 12, 13 | gcdcld 11856 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℕ0) |
15 | 14 | nn0zd 9285 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℤ) |
16 | 1zzd 9195 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 1 ∈ ℤ) | |
17 | zdceq 9240 | . . . . 5 ⊢ (((𝑗 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝑗 gcd 𝑁) = 1) | |
18 | 15, 16, 17 | syl2anc 409 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → DECID (𝑗 gcd 𝑁) = 1) |
19 | oveq1 5832 | . . . . . . . . 9 ⊢ (𝑦 = 𝑗 → (𝑦 gcd 𝑁) = (𝑗 gcd 𝑁)) | |
20 | 19 | eqeq1d 2166 | . . . . . . . 8 ⊢ (𝑦 = 𝑗 → ((𝑦 gcd 𝑁) = 1 ↔ (𝑗 gcd 𝑁) = 1)) |
21 | 20, 7 | elrab2 2871 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑆 ↔ (𝑗 ∈ (0..^𝑁) ∧ (𝑗 gcd 𝑁) = 1)) |
22 | 21 | baibr 906 | . . . . . 6 ⊢ (𝑗 ∈ (0..^𝑁) → ((𝑗 gcd 𝑁) = 1 ↔ 𝑗 ∈ 𝑆)) |
23 | 22 | dcbid 824 | . . . . 5 ⊢ (𝑗 ∈ (0..^𝑁) → (DECID (𝑗 gcd 𝑁) = 1 ↔ DECID 𝑗 ∈ 𝑆)) |
24 | 23 | adantl 275 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (DECID (𝑗 gcd 𝑁) = 1 ↔ DECID 𝑗 ∈ 𝑆)) |
25 | 18, 24 | mpbid 146 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → DECID 𝑗 ∈ 𝑆) |
26 | 25 | ralrimiva 2530 | . 2 ⊢ (𝜑 → ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ 𝑆) |
27 | ssfidc 6880 | . 2 ⊢ (((0..^𝑁) ∈ Fin ∧ 𝑆 ⊆ (0..^𝑁) ∧ ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ 𝑆) → 𝑆 ∈ Fin) | |
28 | 6, 10, 26, 27 | syl3anc 1220 | 1 ⊢ (𝜑 → 𝑆 ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 DECID wdc 820 ∧ w3a 963 = wceq 1335 ∈ wcel 2128 ∀wral 2435 {crab 2439 ⊆ wss 3102 (class class class)co 5825 Fincfn 6686 0cc0 7733 1c1 7734 ℕcn 8834 ℤcz 9168 ..^cfzo 10045 gcd cgcd 11833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4080 ax-sep 4083 ax-nul 4091 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-iinf 4548 ax-cnex 7824 ax-resscn 7825 ax-1cn 7826 ax-1re 7827 ax-icn 7828 ax-addcl 7829 ax-addrcl 7830 ax-mulcl 7831 ax-mulrcl 7832 ax-addcom 7833 ax-mulcom 7834 ax-addass 7835 ax-mulass 7836 ax-distr 7837 ax-i2m1 7838 ax-0lt1 7839 ax-1rid 7840 ax-0id 7841 ax-rnegex 7842 ax-precex 7843 ax-cnre 7844 ax-pre-ltirr 7845 ax-pre-ltwlin 7846 ax-pre-lttrn 7847 ax-pre-apti 7848 ax-pre-ltadd 7849 ax-pre-mulgt0 7850 ax-pre-mulext 7851 ax-arch 7852 ax-caucvg 7853 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-int 3809 df-iun 3852 df-br 3967 df-opab 4027 df-mpt 4028 df-tr 4064 df-id 4254 df-po 4257 df-iso 4258 df-iord 4327 df-on 4329 df-ilim 4330 df-suc 4332 df-iom 4551 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-rn 4598 df-res 4599 df-ima 4600 df-iota 5136 df-fun 5173 df-fn 5174 df-f 5175 df-f1 5176 df-fo 5177 df-f1o 5178 df-fv 5179 df-riota 5781 df-ov 5828 df-oprab 5829 df-mpo 5830 df-1st 6089 df-2nd 6090 df-recs 6253 df-frec 6339 df-1o 6364 df-er 6481 df-en 6687 df-fin 6689 df-sup 6929 df-pnf 7915 df-mnf 7916 df-xr 7917 df-ltxr 7918 df-le 7919 df-sub 8049 df-neg 8050 df-reap 8451 df-ap 8458 df-div 8547 df-inn 8835 df-2 8893 df-3 8894 df-4 8895 df-n0 9092 df-z 9169 df-uz 9441 df-q 9530 df-rp 9562 df-fz 9914 df-fzo 10046 df-fl 10173 df-mod 10226 df-seqfrec 10349 df-exp 10423 df-cj 10746 df-re 10747 df-im 10748 df-rsqrt 10902 df-abs 10903 df-dvds 11688 df-gcd 11834 |
This theorem is referenced by: eulerthlemh 12110 eulerth 12112 |
Copyright terms: Public domain | W3C validator |