| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eulerthlemfi | GIF version | ||
| Description: Lemma for eulerth 12599. The set 𝑆 is finite. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.) |
| Ref | Expression |
|---|---|
| eulerth.1 | ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) |
| eulerth.2 | ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} |
| Ref | Expression |
|---|---|
| eulerthlemfi | ⊢ (𝜑 → 𝑆 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9390 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | eulerth.1 | . . . . 5 ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) | |
| 3 | 2 | simp1d 1012 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 4 | 3 | nnzd 9501 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 5 | fzofig 10584 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^𝑁) ∈ Fin) | |
| 6 | 1, 4, 5 | sylancr 414 | . 2 ⊢ (𝜑 → (0..^𝑁) ∈ Fin) |
| 7 | eulerth.2 | . . . 4 ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} | |
| 8 | ssrab2 3279 | . . . 4 ⊢ {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁) | |
| 9 | 7, 8 | eqsstri 3226 | . . 3 ⊢ 𝑆 ⊆ (0..^𝑁) |
| 10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → 𝑆 ⊆ (0..^𝑁)) |
| 11 | elfzoelz 10276 | . . . . . . . 8 ⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℤ) | |
| 12 | 11 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℤ) |
| 13 | 4 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ) |
| 14 | 12, 13 | gcdcld 12333 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℕ0) |
| 15 | 14 | nn0zd 9500 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℤ) |
| 16 | 1zzd 9406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 1 ∈ ℤ) | |
| 17 | zdceq 9455 | . . . . 5 ⊢ (((𝑗 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝑗 gcd 𝑁) = 1) | |
| 18 | 15, 16, 17 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → DECID (𝑗 gcd 𝑁) = 1) |
| 19 | oveq1 5958 | . . . . . . . . 9 ⊢ (𝑦 = 𝑗 → (𝑦 gcd 𝑁) = (𝑗 gcd 𝑁)) | |
| 20 | 19 | eqeq1d 2215 | . . . . . . . 8 ⊢ (𝑦 = 𝑗 → ((𝑦 gcd 𝑁) = 1 ↔ (𝑗 gcd 𝑁) = 1)) |
| 21 | 20, 7 | elrab2 2933 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑆 ↔ (𝑗 ∈ (0..^𝑁) ∧ (𝑗 gcd 𝑁) = 1)) |
| 22 | 21 | baibr 922 | . . . . . 6 ⊢ (𝑗 ∈ (0..^𝑁) → ((𝑗 gcd 𝑁) = 1 ↔ 𝑗 ∈ 𝑆)) |
| 23 | 22 | dcbid 840 | . . . . 5 ⊢ (𝑗 ∈ (0..^𝑁) → (DECID (𝑗 gcd 𝑁) = 1 ↔ DECID 𝑗 ∈ 𝑆)) |
| 24 | 23 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (DECID (𝑗 gcd 𝑁) = 1 ↔ DECID 𝑗 ∈ 𝑆)) |
| 25 | 18, 24 | mpbid 147 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → DECID 𝑗 ∈ 𝑆) |
| 26 | 25 | ralrimiva 2580 | . 2 ⊢ (𝜑 → ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ 𝑆) |
| 27 | ssfidc 7041 | . 2 ⊢ (((0..^𝑁) ∈ Fin ∧ 𝑆 ⊆ (0..^𝑁) ∧ ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ 𝑆) → 𝑆 ∈ Fin) | |
| 28 | 6, 10, 26, 27 | syl3anc 1250 | 1 ⊢ (𝜑 → 𝑆 ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 836 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {crab 2489 ⊆ wss 3167 (class class class)co 5951 Fincfn 6834 0cc0 7932 1c1 7933 ℕcn 9043 ℤcz 9379 ..^cfzo 10271 gcd cgcd 12318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-1o 6509 df-er 6627 df-en 6835 df-fin 6837 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-dvds 12143 df-gcd 12319 |
| This theorem is referenced by: eulerthlemh 12597 eulerth 12599 |
| Copyright terms: Public domain | W3C validator |