![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eulerthlemfi | GIF version |
Description: Lemma for eulerth 12233. The set 𝑆 is finite. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.) |
Ref | Expression |
---|---|
eulerth.1 | ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) |
eulerth.2 | ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} |
Ref | Expression |
---|---|
eulerthlemfi | ⊢ (𝜑 → 𝑆 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9264 | . . 3 ⊢ 0 ∈ ℤ | |
2 | eulerth.1 | . . . . 5 ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) | |
3 | 2 | simp1d 1009 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
4 | 3 | nnzd 9374 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
5 | fzofig 10432 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^𝑁) ∈ Fin) | |
6 | 1, 4, 5 | sylancr 414 | . 2 ⊢ (𝜑 → (0..^𝑁) ∈ Fin) |
7 | eulerth.2 | . . . 4 ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} | |
8 | ssrab2 3241 | . . . 4 ⊢ {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⊆ (0..^𝑁) | |
9 | 7, 8 | eqsstri 3188 | . . 3 ⊢ 𝑆 ⊆ (0..^𝑁) |
10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → 𝑆 ⊆ (0..^𝑁)) |
11 | elfzoelz 10147 | . . . . . . . 8 ⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℤ) | |
12 | 11 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℤ) |
13 | 4 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ) |
14 | 12, 13 | gcdcld 11969 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℕ0) |
15 | 14 | nn0zd 9373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℤ) |
16 | 1zzd 9280 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 1 ∈ ℤ) | |
17 | zdceq 9328 | . . . . 5 ⊢ (((𝑗 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝑗 gcd 𝑁) = 1) | |
18 | 15, 16, 17 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → DECID (𝑗 gcd 𝑁) = 1) |
19 | oveq1 5882 | . . . . . . . . 9 ⊢ (𝑦 = 𝑗 → (𝑦 gcd 𝑁) = (𝑗 gcd 𝑁)) | |
20 | 19 | eqeq1d 2186 | . . . . . . . 8 ⊢ (𝑦 = 𝑗 → ((𝑦 gcd 𝑁) = 1 ↔ (𝑗 gcd 𝑁) = 1)) |
21 | 20, 7 | elrab2 2897 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑆 ↔ (𝑗 ∈ (0..^𝑁) ∧ (𝑗 gcd 𝑁) = 1)) |
22 | 21 | baibr 920 | . . . . . 6 ⊢ (𝑗 ∈ (0..^𝑁) → ((𝑗 gcd 𝑁) = 1 ↔ 𝑗 ∈ 𝑆)) |
23 | 22 | dcbid 838 | . . . . 5 ⊢ (𝑗 ∈ (0..^𝑁) → (DECID (𝑗 gcd 𝑁) = 1 ↔ DECID 𝑗 ∈ 𝑆)) |
24 | 23 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (DECID (𝑗 gcd 𝑁) = 1 ↔ DECID 𝑗 ∈ 𝑆)) |
25 | 18, 24 | mpbid 147 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → DECID 𝑗 ∈ 𝑆) |
26 | 25 | ralrimiva 2550 | . 2 ⊢ (𝜑 → ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ 𝑆) |
27 | ssfidc 6934 | . 2 ⊢ (((0..^𝑁) ∈ Fin ∧ 𝑆 ⊆ (0..^𝑁) ∧ ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ 𝑆) → 𝑆 ∈ Fin) | |
28 | 6, 10, 26, 27 | syl3anc 1238 | 1 ⊢ (𝜑 → 𝑆 ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 834 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∀wral 2455 {crab 2459 ⊆ wss 3130 (class class class)co 5875 Fincfn 6740 0cc0 7811 1c1 7812 ℕcn 8919 ℤcz 9253 ..^cfzo 10142 gcd cgcd 11943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulrcl 7910 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-precex 7921 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 ax-pre-mulgt0 7928 ax-pre-mulext 7929 ax-arch 7930 ax-caucvg 7931 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-if 3536 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-po 4297 df-iso 4298 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-frec 6392 df-1o 6417 df-er 6535 df-en 6741 df-fin 6743 df-sup 6983 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-reap 8532 df-ap 8539 df-div 8630 df-inn 8920 df-2 8978 df-3 8979 df-4 8980 df-n0 9177 df-z 9254 df-uz 9529 df-q 9620 df-rp 9654 df-fz 10009 df-fzo 10143 df-fl 10270 df-mod 10323 df-seqfrec 10446 df-exp 10520 df-cj 10851 df-re 10852 df-im 10853 df-rsqrt 11007 df-abs 11008 df-dvds 11795 df-gcd 11944 |
This theorem is referenced by: eulerthlemh 12231 eulerth 12233 |
Copyright terms: Public domain | W3C validator |