ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmoeu2 GIF version

Theorem exmoeu2 2067
Description: Existence implies "at most one" is equivalent to uniqueness. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
exmoeu2 (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑))

Proof of Theorem exmoeu2
StepHypRef Expression
1 eu5 2066 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
21baibr 915 1 (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wex 1485  ∃!weu 2019  ∃*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by:  n0mmoeu  3431  fneu  5302
  Copyright terms: Public domain W3C validator