ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmoeu2 GIF version

Theorem exmoeu2 2126
Description: Existence implies "at most one" is equivalent to uniqueness. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
exmoeu2 (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑))

Proof of Theorem exmoeu2
StepHypRef Expression
1 eu5 2125 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
21baibr 925 1 (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wex 1538  ∃!weu 2077  ∃*wmo 2078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by:  n0mmoeu  3508  fneu  5426
  Copyright terms: Public domain W3C validator