ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfopg GIF version

Theorem dfopg 3778
Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dfopg ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})

Proof of Theorem dfopg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 2750 . 2 (𝐴𝑉𝐴 ∈ V)
2 elex 2750 . 2 (𝐵𝑊𝐵 ∈ V)
3 df-3an 980 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
43baibr 920 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})))
54abbidv 2295 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}} = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})})
6 abid2 2298 . . . 4 {𝑥𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}} = {{𝐴}, {𝐴, 𝐵}}
7 df-op 3603 . . . . 5 𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
87eqcomi 2181 . . . 4 {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = ⟨𝐴, 𝐵
95, 6, 83eqtr3g 2233 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {{𝐴}, {𝐴, 𝐵}} = ⟨𝐴, 𝐵⟩)
109eqcomd 2183 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
111, 2, 10syl2an 289 1 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  {cab 2163  Vcvv 2739  {csn 3594  {cpr 3595  cop 3597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741  df-op 3603
This theorem is referenced by:  dfop  3779  opexg  4230  opth1  4238  opth  4239  0nelop  4250  op1stbg  4481
  Copyright terms: Public domain W3C validator