ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfopg GIF version

Theorem dfopg 3642
Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dfopg ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})

Proof of Theorem dfopg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 2644 . 2 (𝐴𝑉𝐴 ∈ V)
2 elex 2644 . 2 (𝐵𝑊𝐵 ∈ V)
3 df-3an 929 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
43baibr 870 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})))
54abbidv 2212 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}} = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})})
6 abid2 2215 . . . 4 {𝑥𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}} = {{𝐴}, {𝐴, 𝐵}}
7 df-op 3475 . . . . 5 𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
87eqcomi 2099 . . . 4 {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = ⟨𝐴, 𝐵
95, 6, 83eqtr3g 2150 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {{𝐴}, {𝐴, 𝐵}} = ⟨𝐴, 𝐵⟩)
109eqcomd 2100 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
111, 2, 10syl2an 284 1 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 927   = wceq 1296  wcel 1445  {cab 2081  Vcvv 2633  {csn 3466  {cpr 3467  cop 3469
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-11 1449  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-v 2635  df-op 3475
This theorem is referenced by:  dfop  3643  opexg  4079  opth1  4087  opth  4088  0nelop  4099  op1stbg  4329
  Copyright terms: Public domain W3C validator