Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfopg | GIF version |
Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dfopg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | elex 2741 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
3 | df-3an 975 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})) | |
4 | 3 | baibr 915 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))) |
5 | 4 | abbidv 2288 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}} = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}) |
6 | abid2 2291 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}} = {{𝐴}, {𝐴, 𝐵}} | |
7 | df-op 3590 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} | |
8 | 7 | eqcomi 2174 | . . . 4 ⊢ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = 〈𝐴, 𝐵〉 |
9 | 5, 6, 8 | 3eqtr3g 2226 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {{𝐴}, {𝐴, 𝐵}} = 〈𝐴, 𝐵〉) |
10 | 9 | eqcomd 2176 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
11 | 1, 2, 10 | syl2an 287 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 {cab 2156 Vcvv 2730 {csn 3581 {cpr 3582 〈cop 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 df-op 3590 |
This theorem is referenced by: dfop 3762 opexg 4211 opth1 4219 opth 4220 0nelop 4231 op1stbg 4462 |
Copyright terms: Public domain | W3C validator |