ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfopg GIF version

Theorem dfopg 3854
Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dfopg ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})

Proof of Theorem dfopg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 2811 . 2 (𝐴𝑉𝐴 ∈ V)
2 elex 2811 . 2 (𝐵𝑊𝐵 ∈ V)
3 df-3an 1004 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
43baibr 925 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})))
54abbidv 2347 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}} = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})})
6 abid2 2350 . . . 4 {𝑥𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}} = {{𝐴}, {𝐴, 𝐵}}
7 df-op 3675 . . . . 5 𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
87eqcomi 2233 . . . 4 {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = ⟨𝐴, 𝐵
95, 6, 83eqtr3g 2285 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {{𝐴}, {𝐴, 𝐵}} = ⟨𝐴, 𝐵⟩)
109eqcomd 2235 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
111, 2, 10syl2an 289 1 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  {cab 2215  Vcvv 2799  {csn 3666  {cpr 3667  cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801  df-op 3675
This theorem is referenced by:  dfop  3855  opexg  4313  opth1  4321  opth  4322  0nelop  4333  op1stbg  4569
  Copyright terms: Public domain W3C validator