![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfopg | GIF version |
Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dfopg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | elex 2771 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
3 | df-3an 982 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})) | |
4 | 3 | baibr 921 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))) |
5 | 4 | abbidv 2311 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}} = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}) |
6 | abid2 2314 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}} = {{𝐴}, {𝐴, 𝐵}} | |
7 | df-op 3627 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} | |
8 | 7 | eqcomi 2197 | . . . 4 ⊢ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = 〈𝐴, 𝐵〉 |
9 | 5, 6, 8 | 3eqtr3g 2249 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {{𝐴}, {𝐴, 𝐵}} = 〈𝐴, 𝐵〉) |
10 | 9 | eqcomd 2199 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
11 | 1, 2, 10 | syl2an 289 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 {cab 2179 Vcvv 2760 {csn 3618 {cpr 3619 〈cop 3621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 df-op 3627 |
This theorem is referenced by: dfop 3803 opexg 4257 opth1 4265 opth 4266 0nelop 4277 op1stbg 4510 |
Copyright terms: Public domain | W3C validator |