ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brinxp GIF version

Theorem brinxp 4567
Description: Intersection of binary relation with cross product. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
brinxp ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))

Proof of Theorem brinxp
StepHypRef Expression
1 brinxp2 4566 . . 3 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))
2 df-3an 947 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝐴𝑅𝐵))
31, 2bitri 183 . 2 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝐴𝑅𝐵))
43baibr 888 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 945  wcel 1463  cin 3036   class class class wbr 3895   × cxp 4497
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-xp 4505
This theorem is referenced by:  poinxp  4568  soinxp  4569  seinxp  4570  isores2  5668  ltpiord  7075
  Copyright terms: Public domain W3C validator