ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brinxp GIF version

Theorem brinxp 4494
Description: Intersection of binary relation with cross product. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
brinxp ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))

Proof of Theorem brinxp
StepHypRef Expression
1 brinxp2 4493 . . 3 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))
2 df-3an 926 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝐴𝑅𝐵))
31, 2bitri 182 . 2 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝐴𝑅𝐵))
43baibr 867 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 924  wcel 1438  cin 2996   class class class wbr 3837   × cxp 4426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-xp 4434
This theorem is referenced by:  poinxp  4495  soinxp  4496  seinxp  4497  isores2  5574  ltpiord  6857
  Copyright terms: Public domain W3C validator