Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundcALT GIF version

Theorem bj-charfundcALT 13766
Description: Alternate proof of bj-charfundc 13765. It was expected to be much shorter since it uses bj-charfun 13764 for the main part of the proof and the rest is basic computations, but these turn out to be lengthy, maybe because of the limited library of available lemmas. (Contributed by BJ, 15-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bj-charfundc.1 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
bj-charfundc.dc (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
Assertion
Ref Expression
bj-charfundcALT (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝐴   𝑥,𝐹

Proof of Theorem bj-charfundcALT
StepHypRef Expression
1 bj-charfundc.1 . . 3 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
21bj-charfun 13764 . 2 (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
3 difin 3364 . . . . . . . . . . . 12 (𝑋 ∖ (𝑋𝐴)) = (𝑋𝐴)
43eqcomi 2174 . . . . . . . . . . 11 (𝑋𝐴) = (𝑋 ∖ (𝑋𝐴))
54a1i 9 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) = (𝑋 ∖ (𝑋𝐴)))
65uneq2d 3281 . . . . . . . . 9 (𝜑 → ((𝑋𝐴) ∪ (𝑋𝐴)) = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))))
7 inss1 3347 . . . . . . . . . . 11 (𝑋𝐴) ⊆ 𝑋
87a1i 9 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
9 bj-charfundc.dc . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
10 elin 3310 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋𝐴) ↔ (𝑥𝑋𝑥𝐴))
1110baibr 915 . . . . . . . . . . . . 13 (𝑥𝑋 → (𝑥𝐴𝑥 ∈ (𝑋𝐴)))
1211dcbid 833 . . . . . . . . . . . 12 (𝑥𝑋 → (DECID 𝑥𝐴DECID 𝑥 ∈ (𝑋𝐴)))
1312ralbiia 2484 . . . . . . . . . . 11 (∀𝑥𝑋 DECID 𝑥𝐴 ↔ ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴))
149, 13sylib 121 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴))
15 undifdcss 6896 . . . . . . . . . 10 (𝑋 = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))) ↔ ((𝑋𝐴) ⊆ 𝑋 ∧ ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴)))
168, 14, 15sylanbrc 415 . . . . . . . . 9 (𝜑𝑋 = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))))
176, 16eqtr4d 2206 . . . . . . . 8 (𝜑 → ((𝑋𝐴) ∪ (𝑋𝐴)) = 𝑋)
1817reseq2d 4889 . . . . . . 7 (𝜑 → (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))) = (𝐹𝑋))
19 ssidd 3168 . . . . . . . . 9 (𝜑𝑋𝑋)
2019resmptd 4940 . . . . . . . 8 (𝜑 → ((𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)) ↾ 𝑋) = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
211reseq1d 4888 . . . . . . . 8 (𝜑 → (𝐹𝑋) = ((𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)) ↾ 𝑋))
2220, 21, 13eqtr4d 2213 . . . . . . 7 (𝜑 → (𝐹𝑋) = 𝐹)
2318, 22eqtrd 2203 . . . . . 6 (𝜑 → (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))) = 𝐹)
2423, 17feq12d 5335 . . . . 5 (𝜑 → ((𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o𝐹:𝑋⟶2o))
2524biimpd 143 . . . 4 (𝜑 → ((𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o𝐹:𝑋⟶2o))
2625adantld 276 . . 3 (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) → 𝐹:𝑋⟶2o))
2726anim1d 334 . 2 (𝜑 → (((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)) → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅))))
282, 27mpd 13 1 (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 829   = wceq 1348  wcel 2141  wral 2448  cdif 3118  cun 3119  cin 3120  wss 3121  c0 3414  ifcif 3525  𝒫 cpw 3564  cmpt 4048  cres 4611  wf 5192  cfv 5196  1oc1o 6385  2oc2o 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-1o 6392  df-2o 6393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator