Proof of Theorem bj-charfundcALT
| Step | Hyp | Ref
| Expression |
| 1 | | bj-charfundc.1 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) |
| 2 | 1 | bj-charfun 15453 |
. 2
⊢ (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))):((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))⟶2o) ∧
(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) |
| 3 | | difin 3400 |
. . . . . . . . . . . 12
⊢ (𝑋 ∖ (𝑋 ∩ 𝐴)) = (𝑋 ∖ 𝐴) |
| 4 | 3 | eqcomi 2200 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ 𝐴) = (𝑋 ∖ (𝑋 ∩ 𝐴)) |
| 5 | 4 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 ∖ 𝐴) = (𝑋 ∖ (𝑋 ∩ 𝐴))) |
| 6 | 5 | uneq2d 3317 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴)) = ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ (𝑋 ∩ 𝐴)))) |
| 7 | | inss1 3383 |
. . . . . . . . . . 11
⊢ (𝑋 ∩ 𝐴) ⊆ 𝑋 |
| 8 | 7 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 ∩ 𝐴) ⊆ 𝑋) |
| 9 | | bj-charfundc.dc |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) |
| 10 | | elin 3346 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝑋 ∩ 𝐴) ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝐴)) |
| 11 | 10 | baibr 921 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝑋 ∩ 𝐴))) |
| 12 | 11 | dcbid 839 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑥 ∈ (𝑋 ∩ 𝐴))) |
| 13 | 12 | ralbiia 2511 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝑋 DECID
𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ (𝑋 ∩ 𝐴)) |
| 14 | 9, 13 | sylib 122 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ (𝑋 ∩ 𝐴)) |
| 15 | | undifdcss 6984 |
. . . . . . . . . 10
⊢ (𝑋 = ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ (𝑋 ∩ 𝐴))) ↔ ((𝑋 ∩ 𝐴) ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ (𝑋 ∩ 𝐴))) |
| 16 | 8, 14, 15 | sylanbrc 417 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 = ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ (𝑋 ∩ 𝐴)))) |
| 17 | 6, 16 | eqtr4d 2232 |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴)) = 𝑋) |
| 18 | 17 | reseq2d 4946 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ↾ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))) = (𝐹 ↾ 𝑋)) |
| 19 | | ssidd 3204 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ⊆ 𝑋) |
| 20 | 19 | resmptd 4997 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅)) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) |
| 21 | 1 | reseq1d 4945 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ↾ 𝑋) = ((𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅)) ↾ 𝑋)) |
| 22 | 20, 21, 1 | 3eqtr4d 2239 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ↾ 𝑋) = 𝐹) |
| 23 | 18, 22 | eqtrd 2229 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))) = 𝐹) |
| 24 | 23, 17 | feq12d 5397 |
. . . . 5
⊢ (𝜑 → ((𝐹 ↾ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))):((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))⟶2o ↔ 𝐹:𝑋⟶2o)) |
| 25 | 24 | biimpd 144 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))):((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))⟶2o → 𝐹:𝑋⟶2o)) |
| 26 | 25 | adantld 278 |
. . 3
⊢ (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))):((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))⟶2o) → 𝐹:𝑋⟶2o)) |
| 27 | 26 | anim1d 336 |
. 2
⊢ (𝜑 → (((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))):((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))⟶2o) ∧
(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅)) → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅)))) |
| 28 | 2, 27 | mpd 13 |
1
⊢ (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) |