Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundcALT GIF version

Theorem bj-charfundcALT 15707
Description: Alternate proof of bj-charfundc 15706. It was expected to be much shorter since it uses bj-charfun 15705 for the main part of the proof and the rest is basic computations, but these turn out to be lengthy, maybe because of the limited library of available lemmas. (Contributed by BJ, 15-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bj-charfundc.1 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
bj-charfundc.dc (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
Assertion
Ref Expression
bj-charfundcALT (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝐴   𝑥,𝐹

Proof of Theorem bj-charfundcALT
StepHypRef Expression
1 bj-charfundc.1 . . 3 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
21bj-charfun 15705 . 2 (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
3 difin 3409 . . . . . . . . . . . 12 (𝑋 ∖ (𝑋𝐴)) = (𝑋𝐴)
43eqcomi 2208 . . . . . . . . . . 11 (𝑋𝐴) = (𝑋 ∖ (𝑋𝐴))
54a1i 9 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) = (𝑋 ∖ (𝑋𝐴)))
65uneq2d 3326 . . . . . . . . 9 (𝜑 → ((𝑋𝐴) ∪ (𝑋𝐴)) = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))))
7 inss1 3392 . . . . . . . . . . 11 (𝑋𝐴) ⊆ 𝑋
87a1i 9 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
9 bj-charfundc.dc . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
10 elin 3355 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋𝐴) ↔ (𝑥𝑋𝑥𝐴))
1110baibr 921 . . . . . . . . . . . . 13 (𝑥𝑋 → (𝑥𝐴𝑥 ∈ (𝑋𝐴)))
1211dcbid 839 . . . . . . . . . . . 12 (𝑥𝑋 → (DECID 𝑥𝐴DECID 𝑥 ∈ (𝑋𝐴)))
1312ralbiia 2519 . . . . . . . . . . 11 (∀𝑥𝑋 DECID 𝑥𝐴 ↔ ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴))
149, 13sylib 122 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴))
15 undifdcss 7019 . . . . . . . . . 10 (𝑋 = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))) ↔ ((𝑋𝐴) ⊆ 𝑋 ∧ ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴)))
168, 14, 15sylanbrc 417 . . . . . . . . 9 (𝜑𝑋 = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))))
176, 16eqtr4d 2240 . . . . . . . 8 (𝜑 → ((𝑋𝐴) ∪ (𝑋𝐴)) = 𝑋)
1817reseq2d 4958 . . . . . . 7 (𝜑 → (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))) = (𝐹𝑋))
19 ssidd 3213 . . . . . . . . 9 (𝜑𝑋𝑋)
2019resmptd 5009 . . . . . . . 8 (𝜑 → ((𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)) ↾ 𝑋) = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
211reseq1d 4957 . . . . . . . 8 (𝜑 → (𝐹𝑋) = ((𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)) ↾ 𝑋))
2220, 21, 13eqtr4d 2247 . . . . . . 7 (𝜑 → (𝐹𝑋) = 𝐹)
2318, 22eqtrd 2237 . . . . . 6 (𝜑 → (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))) = 𝐹)
2423, 17feq12d 5414 . . . . 5 (𝜑 → ((𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o𝐹:𝑋⟶2o))
2524biimpd 144 . . . 4 (𝜑 → ((𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o𝐹:𝑋⟶2o))
2625adantld 278 . . 3 (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) → 𝐹:𝑋⟶2o))
2726anim1d 336 . 2 (𝜑 → (((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)) → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅))))
282, 27mpd 13 1 (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1372  wcel 2175  wral 2483  cdif 3162  cun 3163  cin 3164  wss 3165  c0 3459  ifcif 3570  𝒫 cpw 3615  cmpt 4104  cres 4676  wf 5266  cfv 5270  1oc1o 6494  2oc2o 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-1o 6501  df-2o 6502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator