Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundcALT GIF version

Theorem bj-charfundcALT 15745
Description: Alternate proof of bj-charfundc 15744. It was expected to be much shorter since it uses bj-charfun 15743 for the main part of the proof and the rest is basic computations, but these turn out to be lengthy, maybe because of the limited library of available lemmas. (Contributed by BJ, 15-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bj-charfundc.1 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
bj-charfundc.dc (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
Assertion
Ref Expression
bj-charfundcALT (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝐴   𝑥,𝐹

Proof of Theorem bj-charfundcALT
StepHypRef Expression
1 bj-charfundc.1 . . 3 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
21bj-charfun 15743 . 2 (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
3 difin 3410 . . . . . . . . . . . 12 (𝑋 ∖ (𝑋𝐴)) = (𝑋𝐴)
43eqcomi 2209 . . . . . . . . . . 11 (𝑋𝐴) = (𝑋 ∖ (𝑋𝐴))
54a1i 9 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) = (𝑋 ∖ (𝑋𝐴)))
65uneq2d 3327 . . . . . . . . 9 (𝜑 → ((𝑋𝐴) ∪ (𝑋𝐴)) = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))))
7 inss1 3393 . . . . . . . . . . 11 (𝑋𝐴) ⊆ 𝑋
87a1i 9 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
9 bj-charfundc.dc . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
10 elin 3356 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋𝐴) ↔ (𝑥𝑋𝑥𝐴))
1110baibr 922 . . . . . . . . . . . . 13 (𝑥𝑋 → (𝑥𝐴𝑥 ∈ (𝑋𝐴)))
1211dcbid 840 . . . . . . . . . . . 12 (𝑥𝑋 → (DECID 𝑥𝐴DECID 𝑥 ∈ (𝑋𝐴)))
1312ralbiia 2520 . . . . . . . . . . 11 (∀𝑥𝑋 DECID 𝑥𝐴 ↔ ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴))
149, 13sylib 122 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴))
15 undifdcss 7020 . . . . . . . . . 10 (𝑋 = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))) ↔ ((𝑋𝐴) ⊆ 𝑋 ∧ ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴)))
168, 14, 15sylanbrc 417 . . . . . . . . 9 (𝜑𝑋 = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))))
176, 16eqtr4d 2241 . . . . . . . 8 (𝜑 → ((𝑋𝐴) ∪ (𝑋𝐴)) = 𝑋)
1817reseq2d 4959 . . . . . . 7 (𝜑 → (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))) = (𝐹𝑋))
19 ssidd 3214 . . . . . . . . 9 (𝜑𝑋𝑋)
2019resmptd 5010 . . . . . . . 8 (𝜑 → ((𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)) ↾ 𝑋) = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
211reseq1d 4958 . . . . . . . 8 (𝜑 → (𝐹𝑋) = ((𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)) ↾ 𝑋))
2220, 21, 13eqtr4d 2248 . . . . . . 7 (𝜑 → (𝐹𝑋) = 𝐹)
2318, 22eqtrd 2238 . . . . . 6 (𝜑 → (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))) = 𝐹)
2423, 17feq12d 5415 . . . . 5 (𝜑 → ((𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o𝐹:𝑋⟶2o))
2524biimpd 144 . . . 4 (𝜑 → ((𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o𝐹:𝑋⟶2o))
2625adantld 278 . . 3 (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) → 𝐹:𝑋⟶2o))
2726anim1d 336 . 2 (𝜑 → (((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)) → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅))))
282, 27mpd 13 1 (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2176  wral 2484  cdif 3163  cun 3164  cin 3165  wss 3166  c0 3460  ifcif 3571  𝒫 cpw 3616  cmpt 4105  cres 4677  wf 5267  cfv 5271  1oc1o 6495  2oc2o 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-1o 6502  df-2o 6503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator