Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundcALT GIF version

Theorem bj-charfundcALT 15301
Description: Alternate proof of bj-charfundc 15300. It was expected to be much shorter since it uses bj-charfun 15299 for the main part of the proof and the rest is basic computations, but these turn out to be lengthy, maybe because of the limited library of available lemmas. (Contributed by BJ, 15-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bj-charfundc.1 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
bj-charfundc.dc (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
Assertion
Ref Expression
bj-charfundcALT (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝐴   𝑥,𝐹

Proof of Theorem bj-charfundcALT
StepHypRef Expression
1 bj-charfundc.1 . . 3 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
21bj-charfun 15299 . 2 (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
3 difin 3396 . . . . . . . . . . . 12 (𝑋 ∖ (𝑋𝐴)) = (𝑋𝐴)
43eqcomi 2197 . . . . . . . . . . 11 (𝑋𝐴) = (𝑋 ∖ (𝑋𝐴))
54a1i 9 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) = (𝑋 ∖ (𝑋𝐴)))
65uneq2d 3313 . . . . . . . . 9 (𝜑 → ((𝑋𝐴) ∪ (𝑋𝐴)) = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))))
7 inss1 3379 . . . . . . . . . . 11 (𝑋𝐴) ⊆ 𝑋
87a1i 9 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
9 bj-charfundc.dc . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
10 elin 3342 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋𝐴) ↔ (𝑥𝑋𝑥𝐴))
1110baibr 921 . . . . . . . . . . . . 13 (𝑥𝑋 → (𝑥𝐴𝑥 ∈ (𝑋𝐴)))
1211dcbid 839 . . . . . . . . . . . 12 (𝑥𝑋 → (DECID 𝑥𝐴DECID 𝑥 ∈ (𝑋𝐴)))
1312ralbiia 2508 . . . . . . . . . . 11 (∀𝑥𝑋 DECID 𝑥𝐴 ↔ ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴))
149, 13sylib 122 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴))
15 undifdcss 6979 . . . . . . . . . 10 (𝑋 = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))) ↔ ((𝑋𝐴) ⊆ 𝑋 ∧ ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴)))
168, 14, 15sylanbrc 417 . . . . . . . . 9 (𝜑𝑋 = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))))
176, 16eqtr4d 2229 . . . . . . . 8 (𝜑 → ((𝑋𝐴) ∪ (𝑋𝐴)) = 𝑋)
1817reseq2d 4942 . . . . . . 7 (𝜑 → (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))) = (𝐹𝑋))
19 ssidd 3200 . . . . . . . . 9 (𝜑𝑋𝑋)
2019resmptd 4993 . . . . . . . 8 (𝜑 → ((𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)) ↾ 𝑋) = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
211reseq1d 4941 . . . . . . . 8 (𝜑 → (𝐹𝑋) = ((𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)) ↾ 𝑋))
2220, 21, 13eqtr4d 2236 . . . . . . 7 (𝜑 → (𝐹𝑋) = 𝐹)
2318, 22eqtrd 2226 . . . . . 6 (𝜑 → (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))) = 𝐹)
2423, 17feq12d 5393 . . . . 5 (𝜑 → ((𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o𝐹:𝑋⟶2o))
2524biimpd 144 . . . 4 (𝜑 → ((𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o𝐹:𝑋⟶2o))
2625adantld 278 . . 3 (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) → 𝐹:𝑋⟶2o))
2726anim1d 336 . 2 (𝜑 → (((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)) → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅))))
282, 27mpd 13 1 (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2164  wral 2472  cdif 3150  cun 3151  cin 3152  wss 3153  c0 3446  ifcif 3557  𝒫 cpw 3601  cmpt 4090  cres 4661  wf 5250  cfv 5254  1oc1o 6462  2oc2o 6463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-1o 6469  df-2o 6470
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator