Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundcALT GIF version

Theorem bj-charfundcALT 16130
Description: Alternate proof of bj-charfundc 16129. It was expected to be much shorter since it uses bj-charfun 16128 for the main part of the proof and the rest is basic computations, but these turn out to be lengthy, maybe because of the limited library of available lemmas. (Contributed by BJ, 15-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bj-charfundc.1 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
bj-charfundc.dc (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
Assertion
Ref Expression
bj-charfundcALT (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝐴   𝑥,𝐹

Proof of Theorem bj-charfundcALT
StepHypRef Expression
1 bj-charfundc.1 . . 3 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
21bj-charfun 16128 . 2 (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
3 difin 3441 . . . . . . . . . . . 12 (𝑋 ∖ (𝑋𝐴)) = (𝑋𝐴)
43eqcomi 2233 . . . . . . . . . . 11 (𝑋𝐴) = (𝑋 ∖ (𝑋𝐴))
54a1i 9 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) = (𝑋 ∖ (𝑋𝐴)))
65uneq2d 3358 . . . . . . . . 9 (𝜑 → ((𝑋𝐴) ∪ (𝑋𝐴)) = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))))
7 inss1 3424 . . . . . . . . . . 11 (𝑋𝐴) ⊆ 𝑋
87a1i 9 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
9 bj-charfundc.dc . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
10 elin 3387 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋𝐴) ↔ (𝑥𝑋𝑥𝐴))
1110baibr 925 . . . . . . . . . . . . 13 (𝑥𝑋 → (𝑥𝐴𝑥 ∈ (𝑋𝐴)))
1211dcbid 843 . . . . . . . . . . . 12 (𝑥𝑋 → (DECID 𝑥𝐴DECID 𝑥 ∈ (𝑋𝐴)))
1312ralbiia 2544 . . . . . . . . . . 11 (∀𝑥𝑋 DECID 𝑥𝐴 ↔ ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴))
149, 13sylib 122 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴))
15 undifdcss 7081 . . . . . . . . . 10 (𝑋 = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))) ↔ ((𝑋𝐴) ⊆ 𝑋 ∧ ∀𝑥𝑋 DECID 𝑥 ∈ (𝑋𝐴)))
168, 14, 15sylanbrc 417 . . . . . . . . 9 (𝜑𝑋 = ((𝑋𝐴) ∪ (𝑋 ∖ (𝑋𝐴))))
176, 16eqtr4d 2265 . . . . . . . 8 (𝜑 → ((𝑋𝐴) ∪ (𝑋𝐴)) = 𝑋)
1817reseq2d 5004 . . . . . . 7 (𝜑 → (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))) = (𝐹𝑋))
19 ssidd 3245 . . . . . . . . 9 (𝜑𝑋𝑋)
2019resmptd 5055 . . . . . . . 8 (𝜑 → ((𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)) ↾ 𝑋) = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
211reseq1d 5003 . . . . . . . 8 (𝜑 → (𝐹𝑋) = ((𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)) ↾ 𝑋))
2220, 21, 13eqtr4d 2272 . . . . . . 7 (𝜑 → (𝐹𝑋) = 𝐹)
2318, 22eqtrd 2262 . . . . . 6 (𝜑 → (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))) = 𝐹)
2423, 17feq12d 5462 . . . . 5 (𝜑 → ((𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o𝐹:𝑋⟶2o))
2524biimpd 144 . . . 4 (𝜑 → ((𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o𝐹:𝑋⟶2o))
2625adantld 278 . . 3 (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) → 𝐹:𝑋⟶2o))
2726anim1d 336 . 2 (𝜑 → (((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)) → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅))))
282, 27mpd 13 1 (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  cdif 3194  cun 3195  cin 3196  wss 3197  c0 3491  ifcif 3602  𝒫 cpw 3649  cmpt 4144  cres 4720  wf 5313  cfv 5317  1oc1o 6553  2oc2o 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-1o 6560  df-2o 6561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator