![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbsbc | GIF version |
Description: Show that df-sb 1774 and df-sbc 2987 are equivalent when the class term 𝐴 in df-sbc 2987 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1774 for proofs involving df-sbc 2987. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . 2 ⊢ 𝑦 = 𝑦 | |
2 | dfsbcq2 2989 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 [wsb 1773 [wsbc 2986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-clab 2180 df-cleq 2186 df-clel 2189 df-sbc 2987 |
This theorem is referenced by: spsbc 2998 sbcid 3002 sbcco 3008 sbcco2 3009 sbcie2g 3020 eqsbc1 3026 sbcralt 3063 sbcrext 3064 sbnfc2 3142 csbabg 3143 cbvralcsf 3144 cbvrexcsf 3145 cbvreucsf 3146 cbvrabcsf 3147 isarep1 5341 finexdc 6960 ssfirab 6992 zsupcllemstep 12085 bezoutlemmain 12138 bdsbc 15420 |
Copyright terms: Public domain | W3C validator |