ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbsbc GIF version

Theorem sbsbc 3001
Description: Show that df-sb 1785 and df-sbc 2998 are equivalent when the class term 𝐴 in df-sbc 2998 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1785 for proofs involving df-sbc 2998. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbsbc ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)

Proof of Theorem sbsbc
StepHypRef Expression
1 eqid 2204 . 2 𝑦 = 𝑦
2 dfsbcq2 3000 . 2 (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
31, 2ax-mp 5 1 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1784  [wsbc 2997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-clab 2191  df-cleq 2197  df-clel 2200  df-sbc 2998
This theorem is referenced by:  spsbc  3009  sbcid  3013  sbcco  3019  sbcco2  3020  sbcie2g  3031  eqsbc1  3037  sbcralt  3074  sbcrext  3075  sbnfc2  3153  csbabg  3154  cbvralcsf  3155  cbvrexcsf  3156  cbvreucsf  3157  cbvrabcsf  3158  isarep1  5359  finexdc  6998  ssfirab  7032  zsupcllemstep  10370  bezoutlemmain  12290  bdsbc  15756
  Copyright terms: Public domain W3C validator