![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbsbc | GIF version |
Description: Show that df-sb 1763 and df-sbc 2965 are equivalent when the class term 𝐴 in df-sbc 2965 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1763 for proofs involving df-sbc 2965. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . 2 ⊢ 𝑦 = 𝑦 | |
2 | dfsbcq2 2967 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 [wsb 1762 [wsbc 2964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-clab 2164 df-cleq 2170 df-clel 2173 df-sbc 2965 |
This theorem is referenced by: spsbc 2976 sbcid 2980 sbcco 2986 sbcco2 2987 sbcie2g 2998 eqsbc1 3004 sbcralt 3041 sbcrext 3042 sbnfc2 3119 csbabg 3120 cbvralcsf 3121 cbvrexcsf 3122 cbvreucsf 3123 cbvrabcsf 3124 isarep1 5304 finexdc 6904 ssfirab 6935 zsupcllemstep 11948 bezoutlemmain 12001 bdsbc 14695 |
Copyright terms: Public domain | W3C validator |