| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbsbc | GIF version | ||
| Description: Show that df-sb 1786 and df-sbc 2999 are equivalent when the class term 𝐴 in df-sbc 2999 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1786 for proofs involving df-sbc 2999. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 | . 2 ⊢ 𝑦 = 𝑦 | |
| 2 | dfsbcq2 3001 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1785 [wsbc 2998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-clab 2192 df-cleq 2198 df-clel 2201 df-sbc 2999 |
| This theorem is referenced by: spsbc 3010 sbcid 3014 sbcco 3020 sbcco2 3021 sbcie2g 3032 eqsbc1 3038 sbcralt 3075 sbcrext 3076 sbnfc2 3154 csbabg 3155 cbvralcsf 3156 cbvrexcsf 3157 cbvreucsf 3158 cbvrabcsf 3159 isarep1 5360 finexdc 6999 ssfirab 7033 zsupcllemstep 10372 bezoutlemmain 12319 bdsbc 15794 |
| Copyright terms: Public domain | W3C validator |