![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbsbc | GIF version |
Description: Show that df-sb 1774 and df-sbc 2986 are equivalent when the class term 𝐴 in df-sbc 2986 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1774 for proofs involving df-sbc 2986. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . 2 ⊢ 𝑦 = 𝑦 | |
2 | dfsbcq2 2988 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 [wsb 1773 [wsbc 2985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-clab 2180 df-cleq 2186 df-clel 2189 df-sbc 2986 |
This theorem is referenced by: spsbc 2997 sbcid 3001 sbcco 3007 sbcco2 3008 sbcie2g 3019 eqsbc1 3025 sbcralt 3062 sbcrext 3063 sbnfc2 3141 csbabg 3142 cbvralcsf 3143 cbvrexcsf 3144 cbvreucsf 3145 cbvrabcsf 3146 isarep1 5340 finexdc 6958 ssfirab 6990 zsupcllemstep 12082 bezoutlemmain 12135 bdsbc 15350 |
Copyright terms: Public domain | W3C validator |