Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbsbc | GIF version |
Description: Show that df-sb 1751 and df-sbc 2952 are equivalent when the class term 𝐴 in df-sbc 2952 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1751 for proofs involving df-sbc 2952. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . 2 ⊢ 𝑦 = 𝑦 | |
2 | dfsbcq2 2954 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1750 [wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-clab 2152 df-cleq 2158 df-clel 2161 df-sbc 2952 |
This theorem is referenced by: spsbc 2962 sbcid 2966 sbcco 2972 sbcco2 2973 sbcie2g 2984 eqsbc1 2990 sbcralt 3027 sbcrext 3028 sbnfc2 3105 csbabg 3106 cbvralcsf 3107 cbvrexcsf 3108 cbvreucsf 3109 cbvrabcsf 3110 isarep1 5274 finexdc 6868 ssfirab 6899 zsupcllemstep 11878 bezoutlemmain 11931 bdsbc 13740 |
Copyright terms: Public domain | W3C validator |