Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biadan2 | GIF version |
Description: Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) |
Ref | Expression |
---|---|
biadan2.1 | ⊢ (𝜑 → 𝜓) |
biadan2.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
biadan2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biadan2.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | pm4.71ri 390 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
3 | biadan2.2 | . . 3 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
4 | 3 | pm5.32i 450 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)) |
5 | 2, 4 | bitri 183 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: elab4g 2875 elpwb 3569 ssdifsn 3704 brab2a 4657 brab2ga 4679 elovmpo 6039 eqop2 6146 elnnnn0 9157 elixx3g 9837 elfzo2 10085 1nprm 12046 |
Copyright terms: Public domain | W3C validator |