| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biadan2 | GIF version | ||
| Description: Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) |
| Ref | Expression |
|---|---|
| biadan2.1 | ⊢ (𝜑 → 𝜓) |
| biadan2.2 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biadan2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biadan2.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | pm4.71ri 392 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| 3 | biadan2.2 | . . 3 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 4 | 3 | pm5.32i 454 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elab4g 2952 elpwb 3659 ssdifsn 3795 brab2a 4771 brab2ga 4793 elovmpo 6203 eqop2 6322 elnnnn0 9408 elixx3g 10093 elfzo2 10342 1nprm 12631 |
| Copyright terms: Public domain | W3C validator |