ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnnn0 GIF version

Theorem elnnnn0 9020
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
elnnnn0 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0))

Proof of Theorem elnnnn0
StepHypRef Expression
1 nncn 8728 . 2 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2 npcan1 8140 . . . . 5 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
32eleq1d 2208 . . . 4 (𝑁 ∈ ℂ → (((𝑁 − 1) + 1) ∈ ℕ ↔ 𝑁 ∈ ℕ))
4 peano2cnm 8028 . . . . 5 (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ)
54biantrurd 303 . . . 4 (𝑁 ∈ ℂ → (((𝑁 − 1) + 1) ∈ ℕ ↔ ((𝑁 − 1) ∈ ℂ ∧ ((𝑁 − 1) + 1) ∈ ℕ)))
63, 5bitr3d 189 . . 3 (𝑁 ∈ ℂ → (𝑁 ∈ ℕ ↔ ((𝑁 − 1) ∈ ℂ ∧ ((𝑁 − 1) + 1) ∈ ℕ)))
7 elnn0nn 9019 . . 3 ((𝑁 − 1) ∈ ℕ0 ↔ ((𝑁 − 1) ∈ ℂ ∧ ((𝑁 − 1) + 1) ∈ ℕ))
86, 7syl6bbr 197 . 2 (𝑁 ∈ ℂ → (𝑁 ∈ ℕ ↔ (𝑁 − 1) ∈ ℕ0))
91, 8biadan2 451 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 1480  (class class class)co 5774  cc 7618  1c1 7621   + caddc 7623  cmin 7933  cn 8720  0cn0 8977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7935  df-inn 8721  df-n0 8978
This theorem is referenced by:  elfzom1elp1fzo  9979  facnn2  10480
  Copyright terms: Public domain W3C validator