| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnnn0 | GIF version | ||
| Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| elnnnn0 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn 9114 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 2 | npcan1 8520 | . . . . 5 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) | |
| 3 | 2 | eleq1d 2298 | . . . 4 ⊢ (𝑁 ∈ ℂ → (((𝑁 − 1) + 1) ∈ ℕ ↔ 𝑁 ∈ ℕ)) |
| 4 | peano2cnm 8408 | . . . . 5 ⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) | |
| 5 | 4 | biantrurd 305 | . . . 4 ⊢ (𝑁 ∈ ℂ → (((𝑁 − 1) + 1) ∈ ℕ ↔ ((𝑁 − 1) ∈ ℂ ∧ ((𝑁 − 1) + 1) ∈ ℕ))) |
| 6 | 3, 5 | bitr3d 190 | . . 3 ⊢ (𝑁 ∈ ℂ → (𝑁 ∈ ℕ ↔ ((𝑁 − 1) ∈ ℂ ∧ ((𝑁 − 1) + 1) ∈ ℕ))) |
| 7 | elnn0nn 9407 | . . 3 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ ((𝑁 − 1) ∈ ℂ ∧ ((𝑁 − 1) + 1) ∈ ℕ)) | |
| 8 | 6, 7 | bitr4di 198 | . 2 ⊢ (𝑁 ∈ ℂ → (𝑁 ∈ ℕ ↔ (𝑁 − 1) ∈ ℕ0)) |
| 9 | 1, 8 | biadan2 456 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 1c1 7996 + caddc 7998 − cmin 8313 ℕcn 9106 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-inn 9107 df-n0 9366 |
| This theorem is referenced by: elfzom1elp1fzo 10403 facnn2 10951 |
| Copyright terms: Public domain | W3C validator |