![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqop2 | GIF version |
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.) |
Ref | Expression |
---|---|
eqop2.1 | ⊢ 𝐵 ∈ V |
eqop2.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
eqop2 | ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqop2.1 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | eqop2.2 | . . . 4 ⊢ 𝐶 ∈ V | |
3 | 1, 2 | opelvv 4517 | . . 3 ⊢ 〈𝐵, 𝐶〉 ∈ (V × V) |
4 | eleq1 2157 | . . 3 ⊢ (𝐴 = 〈𝐵, 𝐶〉 → (𝐴 ∈ (V × V) ↔ 〈𝐵, 𝐶〉 ∈ (V × V))) | |
5 | 3, 4 | mpbiri 167 | . 2 ⊢ (𝐴 = 〈𝐵, 𝐶〉 → 𝐴 ∈ (V × V)) |
6 | eqop 5985 | . 2 ⊢ (𝐴 ∈ (V × V) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | |
7 | 5, 6 | biadan2 445 | 1 ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1296 ∈ wcel 1445 Vcvv 2633 〈cop 3469 × cxp 4465 ‘cfv 5049 1st c1st 5947 2nd c2nd 5948 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-sbc 2855 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-fo 5055 df-fv 5057 df-1st 5949 df-2nd 5950 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |