ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqop2 GIF version

Theorem eqop2 6231
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.)
Hypotheses
Ref Expression
eqop2.1 𝐵 ∈ V
eqop2.2 𝐶 ∈ V
Assertion
Ref Expression
eqop2 (𝐴 = ⟨𝐵, 𝐶⟩ ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))

Proof of Theorem eqop2
StepHypRef Expression
1 eqop2.1 . . . 4 𝐵 ∈ V
2 eqop2.2 . . . 4 𝐶 ∈ V
31, 2opelvv 4709 . . 3 𝐵, 𝐶⟩ ∈ (V × V)
4 eleq1 2256 . . 3 (𝐴 = ⟨𝐵, 𝐶⟩ → (𝐴 ∈ (V × V) ↔ ⟨𝐵, 𝐶⟩ ∈ (V × V)))
53, 4mpbiri 168 . 2 (𝐴 = ⟨𝐵, 𝐶⟩ → 𝐴 ∈ (V × V))
6 eqop 6230 . 2 (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))
75, 6biadan2 456 1 (𝐴 = ⟨𝐵, 𝐶⟩ ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  cop 3621   × cxp 4657  cfv 5254  1st c1st 6191  2nd c2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-1st 6193  df-2nd 6194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator