ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzo2 GIF version

Theorem elfzo2 9557
Description: Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
elfzo2 (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))

Proof of Theorem elfzo2
StepHypRef Expression
1 an4 553 . . 3 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀𝐾) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)))
2 df-3an 926 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ))
32anbi1i 446 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)))
4 eluz2 9023 . . . . 5 (𝐾 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾))
5 3ancoma 931 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀𝐾))
6 df-3an 926 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀𝐾) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀𝐾))
74, 5, 63bitri 204 . . . 4 (𝐾 ∈ (ℤ𝑀) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀𝐾))
87anbi1i 446 . . 3 ((𝐾 ∈ (ℤ𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀𝐾) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)))
91, 3, 83bitr4i 210 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)) ↔ (𝐾 ∈ (ℤ𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)))
10 elfzoelz 9554 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ ℤ)
11 elfzoel1 9552 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
12 elfzoel2 9553 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
1310, 11, 123jca 1123 . . 3 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
14 elfzo 9556 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
1513, 14biadan2 444 . 2 (𝐾 ∈ (𝑀..^𝑁) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)))
16 3anass 928 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)))
179, 15, 163bitr4i 210 1 (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  w3a 924  wcel 1438   class class class wbr 3845  cfv 5015  (class class class)co 5652   < clt 7520  cle 7521  cz 8748  cuz 9017  ..^cfzo 9549
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-inn 8421  df-n0 8672  df-z 8749  df-uz 9018  df-fz 9423  df-fzo 9550
This theorem is referenced by:  elfzouz  9558  fzolb  9560  elfzo3  9570  fzouzsplit  9586  elfzo0  9589  fzo1fzo0n0  9590  elfzo1  9597  eluzgtdifelfzo  9604  ssfzo12bi  9632  elfzonelfzo  9637  elfzomelpfzo  9638  iseqf1olemkle  9909  iseqf1olemklt  9910
  Copyright terms: Public domain W3C validator