Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssdifsn | GIF version |
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.) |
Ref | Expression |
---|---|
ssdifsn | ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss2 3250 | . . 3 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) → 𝐴 ⊆ 𝐵) | |
2 | reldisj 3460 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝐴 ∩ {𝐶}) = ∅ ↔ 𝐴 ⊆ (𝐵 ∖ {𝐶}))) | |
3 | 2 | bicomd 140 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∩ {𝐶}) = ∅)) |
4 | 1, 3 | biadan2 452 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ {𝐶}) = ∅)) |
5 | disjsn 3638 | . . 3 ⊢ ((𝐴 ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ 𝐴) | |
6 | 5 | anbi2i 453 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ {𝐶}) = ∅) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
7 | 4, 6 | bitri 183 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∖ cdif 3113 ∩ cin 3115 ⊆ wss 3116 ∅c0 3409 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |