ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdifsn GIF version

Theorem ssdifsn 3796
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.)
Assertion
Ref Expression
ssdifsn (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ ¬ 𝐶𝐴))

Proof of Theorem ssdifsn
StepHypRef Expression
1 difss2 3332 . . 3 (𝐴 ⊆ (𝐵 ∖ {𝐶}) → 𝐴𝐵)
2 reldisj 3543 . . . 4 (𝐴𝐵 → ((𝐴 ∩ {𝐶}) = ∅ ↔ 𝐴 ⊆ (𝐵 ∖ {𝐶})))
32bicomd 141 . . 3 (𝐴𝐵 → (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∩ {𝐶}) = ∅))
41, 3biadan2 456 . 2 (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ (𝐴 ∩ {𝐶}) = ∅))
5 disjsn 3728 . . 3 ((𝐴 ∩ {𝐶}) = ∅ ↔ ¬ 𝐶𝐴)
65anbi2i 457 . 2 ((𝐴𝐵 ∧ (𝐴 ∩ {𝐶}) = ∅) ↔ (𝐴𝐵 ∧ ¬ 𝐶𝐴))
74, 6bitri 184 1 (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ ¬ 𝐶𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105   = wceq 1395  wcel 2200  cdif 3194  cin 3196  wss 3197  c0 3491  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator