Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssdifsn | GIF version |
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.) |
Ref | Expression |
---|---|
ssdifsn | ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss2 3235 | . . 3 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) → 𝐴 ⊆ 𝐵) | |
2 | reldisj 3445 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝐴 ∩ {𝐶}) = ∅ ↔ 𝐴 ⊆ (𝐵 ∖ {𝐶}))) | |
3 | 2 | bicomd 140 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∩ {𝐶}) = ∅)) |
4 | 1, 3 | biadan2 452 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ {𝐶}) = ∅)) |
5 | disjsn 3621 | . . 3 ⊢ ((𝐴 ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ 𝐴) | |
6 | 5 | anbi2i 453 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ {𝐶}) = ∅) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
7 | 4, 6 | bitri 183 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 ∖ cdif 3099 ∩ cin 3101 ⊆ wss 3102 ∅c0 3394 {csn 3560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-dif 3104 df-in 3108 df-ss 3115 df-nul 3395 df-sn 3566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |