| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elovmpo | GIF version | ||
| Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
| Ref | Expression |
|---|---|
| elovmpo.d | ⊢ 𝐷 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) |
| elovmpo.c | ⊢ 𝐶 ∈ V |
| elovmpo.e | ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| elovmpo | ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmpo.d | . . . 4 ⊢ 𝐷 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | elmpocl 6141 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐷𝑌) → (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) |
| 3 | elovmpo.c | . . . . . . 7 ⊢ 𝐶 ∈ V | |
| 4 | 3 | gen2 1473 | . . . . . 6 ⊢ ∀𝑎∀𝑏 𝐶 ∈ V |
| 5 | elovmpo.e | . . . . . . . 8 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐸) | |
| 6 | 5 | eleq1d 2274 | . . . . . . 7 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝐶 ∈ V ↔ 𝐸 ∈ V)) |
| 7 | 6 | spc2gv 2864 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑎∀𝑏 𝐶 ∈ V → 𝐸 ∈ V)) |
| 8 | 4, 7 | mpi 15 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝐸 ∈ V) |
| 9 | 5, 1 | ovmpoga 6075 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐸 ∈ V) → (𝑋𝐷𝑌) = 𝐸) |
| 10 | 8, 9 | mpd3an3 1351 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐷𝑌) = 𝐸) |
| 11 | 10 | eleq2d 2275 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐹 ∈ (𝑋𝐷𝑌) ↔ 𝐹 ∈ 𝐸)) |
| 12 | 2, 11 | biadan2 456 | . 2 ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ 𝐸)) |
| 13 | df-3an 983 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸) ↔ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ 𝐸)) | |
| 14 | 12, 13 | bitr4i 187 | 1 ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 ∀wal 1371 = wceq 1373 ∈ wcel 2176 Vcvv 2772 (class class class)co 5944 ∈ cmpo 5946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |