ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elovmpo GIF version

Theorem elovmpo 6122
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypotheses
Ref Expression
elovmpo.d 𝐷 = (𝑎𝐴, 𝑏𝐵𝐶)
elovmpo.c 𝐶 ∈ V
elovmpo.e ((𝑎 = 𝑋𝑏 = 𝑌) → 𝐶 = 𝐸)
Assertion
Ref Expression
elovmpo (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋𝐴𝑌𝐵𝐹𝐸))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏
Allowed substitution hints:   𝐶(𝑎,𝑏)   𝐷(𝑎,𝑏)

Proof of Theorem elovmpo
StepHypRef Expression
1 elovmpo.d . . . 4 𝐷 = (𝑎𝐴, 𝑏𝐵𝐶)
21elmpocl 6118 . . 3 (𝐹 ∈ (𝑋𝐷𝑌) → (𝑋𝐴𝑌𝐵))
3 elovmpo.c . . . . . . 7 𝐶 ∈ V
43gen2 1464 . . . . . 6 𝑎𝑏 𝐶 ∈ V
5 elovmpo.e . . . . . . . 8 ((𝑎 = 𝑋𝑏 = 𝑌) → 𝐶 = 𝐸)
65eleq1d 2265 . . . . . . 7 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝐶 ∈ V ↔ 𝐸 ∈ V))
76spc2gv 2855 . . . . . 6 ((𝑋𝐴𝑌𝐵) → (∀𝑎𝑏 𝐶 ∈ V → 𝐸 ∈ V))
84, 7mpi 15 . . . . 5 ((𝑋𝐴𝑌𝐵) → 𝐸 ∈ V)
95, 1ovmpoga 6052 . . . . 5 ((𝑋𝐴𝑌𝐵𝐸 ∈ V) → (𝑋𝐷𝑌) = 𝐸)
108, 9mpd3an3 1349 . . . 4 ((𝑋𝐴𝑌𝐵) → (𝑋𝐷𝑌) = 𝐸)
1110eleq2d 2266 . . 3 ((𝑋𝐴𝑌𝐵) → (𝐹 ∈ (𝑋𝐷𝑌) ↔ 𝐹𝐸))
122, 11biadan2 456 . 2 (𝐹 ∈ (𝑋𝐷𝑌) ↔ ((𝑋𝐴𝑌𝐵) ∧ 𝐹𝐸))
13 df-3an 982 . 2 ((𝑋𝐴𝑌𝐵𝐹𝐸) ↔ ((𝑋𝐴𝑌𝐵) ∧ 𝐹𝐸))
1412, 13bitr4i 187 1 (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋𝐴𝑌𝐵𝐹𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1362   = wceq 1364  wcel 2167  Vcvv 2763  (class class class)co 5922  cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator