ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1nprm GIF version

Theorem 1nprm 12282
Description: 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.)
Assertion
Ref Expression
1nprm ¬ 1 ∈ ℙ

Proof of Theorem 1nprm
Dummy variables 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nen2 6922 . 2 ¬ 1o ≈ 2o
2 1nn 9001 . . . . . . . . 9 1 ∈ ℕ
3 eleq1 2259 . . . . . . . . 9 (𝑧 = 1 → (𝑧 ∈ ℕ ↔ 1 ∈ ℕ))
42, 3mpbiri 168 . . . . . . . 8 (𝑧 = 1 → 𝑧 ∈ ℕ)
5 nnnn0 9256 . . . . . . . . . 10 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ0)
6 dvds1 12018 . . . . . . . . . 10 (𝑧 ∈ ℕ0 → (𝑧 ∥ 1 ↔ 𝑧 = 1))
75, 6syl 14 . . . . . . . . 9 (𝑧 ∈ ℕ → (𝑧 ∥ 1 ↔ 𝑧 = 1))
87bicomd 141 . . . . . . . 8 (𝑧 ∈ ℕ → (𝑧 = 1 ↔ 𝑧 ∥ 1))
94, 8biadan2 456 . . . . . . 7 (𝑧 = 1 ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1))
10 velsn 3639 . . . . . . 7 (𝑧 ∈ {1} ↔ 𝑧 = 1)
11 breq1 4036 . . . . . . . 8 (𝑛 = 𝑧 → (𝑛 ∥ 1 ↔ 𝑧 ∥ 1))
1211elrab 2920 . . . . . . 7 (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1))
139, 10, 123bitr4ri 213 . . . . . 6 (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ 𝑧 ∈ {1})
1413eqriv 2193 . . . . 5 {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} = {1}
15 1ex 8021 . . . . . 6 1 ∈ V
1615ensn1 6855 . . . . 5 {1} ≈ 1o
1714, 16eqbrtri 4054 . . . 4 {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 1o
1817ensymi 6841 . . 3 1o ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1}
19 isprm 12277 . . . 4 (1 ∈ ℙ ↔ (1 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o))
2019simprbi 275 . . 3 (1 ∈ ℙ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o)
21 entr 6843 . . 3 ((1o ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o) → 1o ≈ 2o)
2218, 20, 21sylancr 414 . 2 (1 ∈ ℙ → 1o ≈ 2o)
231, 22mto 663 1 ¬ 1 ∈ ℙ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105   = wceq 1364  wcel 2167  {crab 2479  {csn 3622   class class class wbr 4033  1oc1o 6467  2oc2o 6468  cen 6797  1c1 7880  cn 8990  0cn0 9249  cdvds 11952  cprime 12275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-prm 12276
This theorem is referenced by:  isprm2  12285  nprmdvds1  12308  prm23lt5  12432  pcmpt  12512  2lgs  15345
  Copyright terms: Public domain W3C validator