| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nprm | GIF version | ||
| Description: 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1nprm | ⊢ ¬ 1 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nen2 7018 | . 2 ⊢ ¬ 1o ≈ 2o | |
| 2 | 1nn 9117 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 3 | eleq1 2292 | . . . . . . . . 9 ⊢ (𝑧 = 1 → (𝑧 ∈ ℕ ↔ 1 ∈ ℕ)) | |
| 4 | 2, 3 | mpbiri 168 | . . . . . . . 8 ⊢ (𝑧 = 1 → 𝑧 ∈ ℕ) |
| 5 | nnnn0 9372 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℕ0) | |
| 6 | dvds1 12359 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ0 → (𝑧 ∥ 1 ↔ 𝑧 = 1)) | |
| 7 | 5, 6 | syl 14 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℕ → (𝑧 ∥ 1 ↔ 𝑧 = 1)) |
| 8 | 7 | bicomd 141 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ → (𝑧 = 1 ↔ 𝑧 ∥ 1)) |
| 9 | 4, 8 | biadan2 456 | . . . . . . 7 ⊢ (𝑧 = 1 ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1)) |
| 10 | velsn 3683 | . . . . . . 7 ⊢ (𝑧 ∈ {1} ↔ 𝑧 = 1) | |
| 11 | breq1 4085 | . . . . . . . 8 ⊢ (𝑛 = 𝑧 → (𝑛 ∥ 1 ↔ 𝑧 ∥ 1)) | |
| 12 | 11 | elrab 2959 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1)) |
| 13 | 9, 10, 12 | 3bitr4ri 213 | . . . . . 6 ⊢ (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ 𝑧 ∈ {1}) |
| 14 | 13 | eqriv 2226 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} = {1} |
| 15 | 1ex 8137 | . . . . . 6 ⊢ 1 ∈ V | |
| 16 | 15 | ensn1 6946 | . . . . 5 ⊢ {1} ≈ 1o |
| 17 | 14, 16 | eqbrtri 4103 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 1o |
| 18 | 17 | ensymi 6932 | . . 3 ⊢ 1o ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} |
| 19 | isprm 12626 | . . . 4 ⊢ (1 ∈ ℙ ↔ (1 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o)) | |
| 20 | 19 | simprbi 275 | . . 3 ⊢ (1 ∈ ℙ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o) |
| 21 | entr 6934 | . . 3 ⊢ ((1o ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o) → 1o ≈ 2o) | |
| 22 | 18, 20, 21 | sylancr 414 | . 2 ⊢ (1 ∈ ℙ → 1o ≈ 2o) |
| 23 | 1, 22 | mto 666 | 1 ⊢ ¬ 1 ∈ ℙ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {crab 2512 {csn 3666 class class class wbr 4082 1oc1o 6553 2oc2o 6554 ≈ cen 6883 1c1 7996 ℕcn 9106 ℕ0cn0 9365 ∥ cdvds 12293 ℙcprime 12624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-1o 6560 df-2o 6561 df-er 6678 df-en 6886 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-dvds 12294 df-prm 12625 |
| This theorem is referenced by: isprm2 12634 nprmdvds1 12657 prm23lt5 12781 pcmpt 12861 2lgs 15777 |
| Copyright terms: Public domain | W3C validator |