| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nprm | GIF version | ||
| Description: 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1nprm | ⊢ ¬ 1 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nen2 6957 | . 2 ⊢ ¬ 1o ≈ 2o | |
| 2 | 1nn 9046 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 3 | eleq1 2267 | . . . . . . . . 9 ⊢ (𝑧 = 1 → (𝑧 ∈ ℕ ↔ 1 ∈ ℕ)) | |
| 4 | 2, 3 | mpbiri 168 | . . . . . . . 8 ⊢ (𝑧 = 1 → 𝑧 ∈ ℕ) |
| 5 | nnnn0 9301 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℕ0) | |
| 6 | dvds1 12106 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ0 → (𝑧 ∥ 1 ↔ 𝑧 = 1)) | |
| 7 | 5, 6 | syl 14 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℕ → (𝑧 ∥ 1 ↔ 𝑧 = 1)) |
| 8 | 7 | bicomd 141 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ → (𝑧 = 1 ↔ 𝑧 ∥ 1)) |
| 9 | 4, 8 | biadan2 456 | . . . . . . 7 ⊢ (𝑧 = 1 ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1)) |
| 10 | velsn 3649 | . . . . . . 7 ⊢ (𝑧 ∈ {1} ↔ 𝑧 = 1) | |
| 11 | breq1 4046 | . . . . . . . 8 ⊢ (𝑛 = 𝑧 → (𝑛 ∥ 1 ↔ 𝑧 ∥ 1)) | |
| 12 | 11 | elrab 2928 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1)) |
| 13 | 9, 10, 12 | 3bitr4ri 213 | . . . . . 6 ⊢ (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ 𝑧 ∈ {1}) |
| 14 | 13 | eqriv 2201 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} = {1} |
| 15 | 1ex 8066 | . . . . . 6 ⊢ 1 ∈ V | |
| 16 | 15 | ensn1 6887 | . . . . 5 ⊢ {1} ≈ 1o |
| 17 | 14, 16 | eqbrtri 4064 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 1o |
| 18 | 17 | ensymi 6873 | . . 3 ⊢ 1o ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} |
| 19 | isprm 12373 | . . . 4 ⊢ (1 ∈ ℙ ↔ (1 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o)) | |
| 20 | 19 | simprbi 275 | . . 3 ⊢ (1 ∈ ℙ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o) |
| 21 | entr 6875 | . . 3 ⊢ ((1o ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o) → 1o ≈ 2o) | |
| 22 | 18, 20, 21 | sylancr 414 | . 2 ⊢ (1 ∈ ℙ → 1o ≈ 2o) |
| 23 | 1, 22 | mto 663 | 1 ⊢ ¬ 1 ∈ ℙ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 {crab 2487 {csn 3632 class class class wbr 4043 1oc1o 6494 2oc2o 6495 ≈ cen 6824 1c1 7925 ℕcn 9035 ℕ0cn0 9294 ∥ cdvds 12040 ℙcprime 12371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-1o 6501 df-2o 6502 df-er 6619 df-en 6827 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-seqfrec 10591 df-exp 10682 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-dvds 12041 df-prm 12372 |
| This theorem is referenced by: isprm2 12381 nprmdvds1 12404 prm23lt5 12528 pcmpt 12608 2lgs 15523 |
| Copyright terms: Public domain | W3C validator |