ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1nprm GIF version

Theorem 1nprm 12631
Description: 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.)
Assertion
Ref Expression
1nprm ¬ 1 ∈ ℙ

Proof of Theorem 1nprm
Dummy variables 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nen2 7018 . 2 ¬ 1o ≈ 2o
2 1nn 9117 . . . . . . . . 9 1 ∈ ℕ
3 eleq1 2292 . . . . . . . . 9 (𝑧 = 1 → (𝑧 ∈ ℕ ↔ 1 ∈ ℕ))
42, 3mpbiri 168 . . . . . . . 8 (𝑧 = 1 → 𝑧 ∈ ℕ)
5 nnnn0 9372 . . . . . . . . . 10 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ0)
6 dvds1 12359 . . . . . . . . . 10 (𝑧 ∈ ℕ0 → (𝑧 ∥ 1 ↔ 𝑧 = 1))
75, 6syl 14 . . . . . . . . 9 (𝑧 ∈ ℕ → (𝑧 ∥ 1 ↔ 𝑧 = 1))
87bicomd 141 . . . . . . . 8 (𝑧 ∈ ℕ → (𝑧 = 1 ↔ 𝑧 ∥ 1))
94, 8biadan2 456 . . . . . . 7 (𝑧 = 1 ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1))
10 velsn 3683 . . . . . . 7 (𝑧 ∈ {1} ↔ 𝑧 = 1)
11 breq1 4085 . . . . . . . 8 (𝑛 = 𝑧 → (𝑛 ∥ 1 ↔ 𝑧 ∥ 1))
1211elrab 2959 . . . . . . 7 (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1))
139, 10, 123bitr4ri 213 . . . . . 6 (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ 𝑧 ∈ {1})
1413eqriv 2226 . . . . 5 {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} = {1}
15 1ex 8137 . . . . . 6 1 ∈ V
1615ensn1 6946 . . . . 5 {1} ≈ 1o
1714, 16eqbrtri 4103 . . . 4 {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 1o
1817ensymi 6932 . . 3 1o ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1}
19 isprm 12626 . . . 4 (1 ∈ ℙ ↔ (1 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o))
2019simprbi 275 . . 3 (1 ∈ ℙ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o)
21 entr 6934 . . 3 ((1o ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o) → 1o ≈ 2o)
2218, 20, 21sylancr 414 . 2 (1 ∈ ℙ → 1o ≈ 2o)
231, 22mto 666 1 ¬ 1 ∈ ℙ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105   = wceq 1395  wcel 2200  {crab 2512  {csn 3666   class class class wbr 4082  1oc1o 6553  2oc2o 6554  cen 6883  1c1 7996  cn 9106  0cn0 9365  cdvds 12293  cprime 12624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-prm 12625
This theorem is referenced by:  isprm2  12634  nprmdvds1  12657  prm23lt5  12781  pcmpt  12861  2lgs  15777
  Copyright terms: Public domain W3C validator