ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1nprm GIF version

Theorem 1nprm 11002
Description: 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.)
Assertion
Ref Expression
1nprm ¬ 1 ∈ ℙ

Proof of Theorem 1nprm
Dummy variables 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nen2 6531 . 2 ¬ 1𝑜 ≈ 2𝑜
2 1nn 8371 . . . . . . . . 9 1 ∈ ℕ
3 eleq1 2147 . . . . . . . . 9 (𝑧 = 1 → (𝑧 ∈ ℕ ↔ 1 ∈ ℕ))
42, 3mpbiri 166 . . . . . . . 8 (𝑧 = 1 → 𝑧 ∈ ℕ)
5 nnnn0 8616 . . . . . . . . . 10 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ0)
6 dvds1 10760 . . . . . . . . . 10 (𝑧 ∈ ℕ0 → (𝑧 ∥ 1 ↔ 𝑧 = 1))
75, 6syl 14 . . . . . . . . 9 (𝑧 ∈ ℕ → (𝑧 ∥ 1 ↔ 𝑧 = 1))
87bicomd 139 . . . . . . . 8 (𝑧 ∈ ℕ → (𝑧 = 1 ↔ 𝑧 ∥ 1))
94, 8biadan2 444 . . . . . . 7 (𝑧 = 1 ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1))
10 velsn 3448 . . . . . . 7 (𝑧 ∈ {1} ↔ 𝑧 = 1)
11 breq1 3825 . . . . . . . 8 (𝑛 = 𝑧 → (𝑛 ∥ 1 ↔ 𝑧 ∥ 1))
1211elrab 2762 . . . . . . 7 (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1))
139, 10, 123bitr4ri 211 . . . . . 6 (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ 𝑧 ∈ {1})
1413eqriv 2082 . . . . 5 {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} = {1}
15 1ex 7430 . . . . . 6 1 ∈ V
1615ensn1 6467 . . . . 5 {1} ≈ 1𝑜
1714, 16eqbrtri 3841 . . . 4 {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 1𝑜
1817ensymi 6453 . . 3 1𝑜 ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1}
19 isprm 10997 . . . 4 (1 ∈ ℙ ↔ (1 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2𝑜))
2019simprbi 269 . . 3 (1 ∈ ℙ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2𝑜)
21 entr 6455 . . 3 ((1𝑜 ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2𝑜) → 1𝑜 ≈ 2𝑜)
2218, 20, 21sylancr 405 . 2 (1 ∈ ℙ → 1𝑜 ≈ 2𝑜)
231, 22mto 621 1 ¬ 1 ∈ ℙ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102  wb 103   = wceq 1287  wcel 1436  {crab 2359  {csn 3431   class class class wbr 3822  1𝑜c1o 6130  2𝑜c2o 6131  cen 6409  1c1 7298  cn 8360  0cn0 8609  cdvds 10702  cprime 10995
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3931  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-mulrcl 7391  ax-addcom 7392  ax-mulcom 7393  ax-addass 7394  ax-mulass 7395  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-1rid 7399  ax-0id 7400  ax-rnegex 7401  ax-precex 7402  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-apti 7407  ax-pre-ltadd 7408  ax-pre-mulgt0 7409  ax-pre-mulext 7410  ax-arch 7411  ax-caucvg 7412
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-id 4096  df-po 4099  df-iso 4100  df-iord 4169  df-on 4171  df-ilim 4172  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-recs 6026  df-frec 6112  df-1o 6137  df-2o 6138  df-er 6246  df-en 6412  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-reap 7996  df-ap 8003  df-div 8082  df-inn 8361  df-2 8419  df-3 8420  df-4 8421  df-n0 8610  df-z 8687  df-uz 8955  df-q 9040  df-rp 9070  df-iseq 9783  df-iexp 9857  df-cj 10175  df-re 10176  df-im 10177  df-rsqrt 10330  df-abs 10331  df-dvds 10703  df-prm 10996
This theorem is referenced by:  isprm2  11005  nprmdvds1  11027
  Copyright terms: Public domain W3C validator