ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwb GIF version

Theorem elpwb 3626
Description: Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
elpwb (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))

Proof of Theorem elpwb
StepHypRef Expression
1 elex 2783 . 2 (𝐴 ∈ 𝒫 𝐵𝐴 ∈ V)
2 elpwg 3624 . 2 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
31, 2biadan2 456 1 (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2176  Vcvv 2772  wss 3166  𝒫 cpw 3616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618
This theorem is referenced by:  elpwpw  4014  elpwpwel  4522
  Copyright terms: Public domain W3C validator