ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi1d GIF version

Theorem bibi1d 233
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
imbid.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
bibi1d (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜃)))

Proof of Theorem bibi1d
StepHypRef Expression
1 imbid.1 . . 3 (𝜑 → (𝜓𝜒))
21bibi2d 232 . 2 (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))
3 bicom 140 . 2 ((𝜓𝜃) ↔ (𝜃𝜓))
4 bicom 140 . 2 ((𝜒𝜃) ↔ (𝜃𝜒))
52, 3, 43bitr4g 223 1 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bibi12d  235  bibi1  240  biassdc  1395  eubidh  2032  eubid  2033  axext3  2160  bm1.1  2162  eqeq1  2184  pm13.183  2877  elabgt  2880  elrab3t  2894  mob  2921  sbctt  3031  sbcabel  3046  isoeq2  5805  caovcang  6038  frecabcl  6402  expap0  10552  bezoutlemeu  12010  dfgcd3  12013  bezout  12014  prmdvdsexp  12150  ismet  13883  isxmet  13884  bdsepnft  14678  bdsepnfALT  14680
  Copyright terms: Public domain W3C validator