![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bibi1d | GIF version |
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bibi2d 232 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
3 | bicom 140 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
4 | bicom 140 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi12d 235 bibi1 240 biassdc 1406 eubidh 2048 eubid 2049 axext3 2176 bm1.1 2178 eqeq1 2200 pm13.183 2898 elabgt 2901 elrab3t 2915 mob 2942 sbctt 3052 sbcabel 3067 isoeq2 5845 caovcang 6080 uchoice 6190 frecabcl 6452 expap0 10640 bezoutlemeu 12144 dfgcd3 12147 bezout 12148 prmdvdsexp 12286 ismet 14512 isxmet 14513 bdsepnft 15379 bdsepnfALT 15381 |
Copyright terms: Public domain | W3C validator |