ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi1d GIF version

Theorem bibi1d 233
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
imbid.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
bibi1d (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜃)))

Proof of Theorem bibi1d
StepHypRef Expression
1 imbid.1 . . 3 (𝜑 → (𝜓𝜒))
21bibi2d 232 . 2 (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))
3 bicom 140 . 2 ((𝜓𝜃) ↔ (𝜃𝜓))
4 bicom 140 . 2 ((𝜒𝜃) ↔ (𝜃𝜒))
52, 3, 43bitr4g 223 1 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bibi12d  235  bibi1  240  biassdc  1415  eubidh  2061  eubid  2062  axext3  2189  bm1.1  2191  eqeq1  2213  pm13.183  2913  elabgt  2916  elrab3t  2930  mob  2957  sbctt  3067  sbcabel  3082  isoeq2  5881  caovcang  6118  uchoice  6233  frecabcl  6495  expap0  10727  bezoutlemeu  12378  dfgcd3  12381  bezout  12382  prmdvdsexp  12520  ismet  14866  isxmet  14867  bdsepnft  15937  bdsepnfALT  15939
  Copyright terms: Public domain W3C validator