| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bibi1d | GIF version | ||
| Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bibi2d 232 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| 3 | bicom 140 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
| 4 | bicom 140 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi12d 235 bibi1 240 biassdc 1437 eubidh 2083 eubid 2084 axext3 2212 bm1.1 2214 eqeq1 2236 pm13.183 2941 elabgt 2944 elrab3t 2958 mob 2985 sbctt 3095 sbcabel 3111 isoeq2 5919 caovcang 6158 uchoice 6273 frecabcl 6535 expap0 10778 bezoutlemeu 12514 dfgcd3 12517 bezout 12518 prmdvdsexp 12656 ismet 15003 isxmet 15004 bdsepnft 16180 bdsepnfALT 16182 |
| Copyright terms: Public domain | W3C validator |