| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bibi1d | GIF version | ||
| Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bibi2d 232 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| 3 | bicom 140 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
| 4 | bicom 140 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi12d 235 bibi1 240 biassdc 1415 eubidh 2061 eubid 2062 axext3 2189 bm1.1 2191 eqeq1 2213 pm13.183 2913 elabgt 2916 elrab3t 2930 mob 2957 sbctt 3067 sbcabel 3082 isoeq2 5881 caovcang 6118 uchoice 6233 frecabcl 6495 expap0 10727 bezoutlemeu 12378 dfgcd3 12381 bezout 12382 prmdvdsexp 12520 ismet 14866 isxmet 14867 bdsepnft 15937 bdsepnfALT 15939 |
| Copyright terms: Public domain | W3C validator |