ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi1d GIF version

Theorem bibi1d 233
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
imbid.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
bibi1d (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜃)))

Proof of Theorem bibi1d
StepHypRef Expression
1 imbid.1 . . 3 (𝜑 → (𝜓𝜒))
21bibi2d 232 . 2 (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))
3 bicom 140 . 2 ((𝜓𝜃) ↔ (𝜃𝜓))
4 bicom 140 . 2 ((𝜒𝜃) ↔ (𝜃𝜒))
52, 3, 43bitr4g 223 1 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bibi12d  235  bibi1  240  biassdc  1406  eubidh  2051  eubid  2052  axext3  2179  bm1.1  2181  eqeq1  2203  pm13.183  2902  elabgt  2905  elrab3t  2919  mob  2946  sbctt  3056  sbcabel  3071  isoeq2  5852  caovcang  6089  uchoice  6204  frecabcl  6466  expap0  10678  bezoutlemeu  12199  dfgcd3  12202  bezout  12203  prmdvdsexp  12341  ismet  14664  isxmet  14665  bdsepnft  15617  bdsepnfALT  15619
  Copyright terms: Public domain W3C validator