ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi1d GIF version

Theorem bibi1d 233
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
imbid.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
bibi1d (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜃)))

Proof of Theorem bibi1d
StepHypRef Expression
1 imbid.1 . . 3 (𝜑 → (𝜓𝜒))
21bibi2d 232 . 2 (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))
3 bicom 140 . 2 ((𝜓𝜃) ↔ (𝜃𝜓))
4 bicom 140 . 2 ((𝜒𝜃) ↔ (𝜃𝜒))
52, 3, 43bitr4g 223 1 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bibi12d  235  bibi1  240  biassdc  1437  eubidh  2083  eubid  2084  axext3  2212  bm1.1  2214  eqeq1  2236  pm13.183  2941  elabgt  2944  elrab3t  2958  mob  2985  sbctt  3095  sbcabel  3111  isoeq2  5932  caovcang  6173  uchoice  6289  frecabcl  6551  expap0  10799  bezoutlemeu  12536  dfgcd3  12539  bezout  12540  prmdvdsexp  12678  ismet  15026  isxmet  15027  bdsepnft  16274  bdsepnfALT  16276
  Copyright terms: Public domain W3C validator