Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bibi1d | GIF version |
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bibi2d 231 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
3 | bicom 139 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
4 | bicom 139 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bibi12d 234 bibi1 239 biassdc 1390 eubidh 2025 eubid 2026 axext3 2153 bm1.1 2155 eqeq1 2177 pm13.183 2868 elabgt 2871 elrab3t 2885 mob 2912 sbctt 3021 sbcabel 3036 isoeq2 5781 caovcang 6014 frecabcl 6378 expap0 10506 bezoutlemeu 11962 dfgcd3 11965 bezout 11966 prmdvdsexp 12102 ismet 13138 isxmet 13139 bdsepnft 13922 bdsepnfALT 13924 |
Copyright terms: Public domain | W3C validator |