Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvalh | GIF version |
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
cbvalh.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
cbvalh.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
cbvalh.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvalh | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalh.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | cbvalh.2 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | cbvalh.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 3 | biimpd 143 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
5 | 1, 2, 4 | cbv3h 1723 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
6 | 3 | equcoms 1688 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
7 | 6 | biimprd 157 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) |
8 | 2, 1, 7 | cbv3h 1723 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) |
9 | 5, 8 | impbii 125 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1441 |
This theorem is referenced by: cbval 1734 sb8h 1834 cbvalv 1897 sb9v 1958 sb8euh 2029 |
Copyright terms: Public domain | W3C validator |