| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvalh | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) | 
| Ref | Expression | 
|---|---|
| cbvalh.1 | ⊢ (𝜑 → ∀𝑦𝜑) | 
| cbvalh.2 | ⊢ (𝜓 → ∀𝑥𝜓) | 
| cbvalh.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvalh | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvalh.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | cbvalh.2 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | cbvalh.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | biimpd 144 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | 
| 5 | 1, 2, 4 | cbv3h 1757 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | 
| 6 | 3 | equcoms 1722 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | 
| 7 | 6 | biimprd 158 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) | 
| 8 | 2, 1, 7 | cbv3h 1757 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) | 
| 9 | 5, 8 | impbii 126 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: cbval 1768 sb8h 1868 cbvalv 1932 sb9v 1997 sb8euh 2068 | 
| Copyright terms: Public domain | W3C validator |