ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvalh GIF version

Theorem cbvalh 1741
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
cbvalh.1 (𝜑 → ∀𝑦𝜑)
cbvalh.2 (𝜓 → ∀𝑥𝜓)
cbvalh.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalh (∀𝑥𝜑 ↔ ∀𝑦𝜓)

Proof of Theorem cbvalh
StepHypRef Expression
1 cbvalh.1 . . 3 (𝜑 → ∀𝑦𝜑)
2 cbvalh.2 . . 3 (𝜓 → ∀𝑥𝜓)
3 cbvalh.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43biimpd 143 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 4cbv3h 1731 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
63equcoms 1696 . . . 4 (𝑦 = 𝑥 → (𝜑𝜓))
76biimprd 157 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
82, 1, 7cbv3h 1731 . 2 (∀𝑦𝜓 → ∀𝑥𝜑)
95, 8impbii 125 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  cbval  1742  sb8h  1842  cbvalv  1905  sb9v  1966  sb8euh  2037
  Copyright terms: Public domain W3C validator