Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbv2 | GIF version |
Description: Rule used to change bound variables, using implicit substitution. Revised to align format of hypotheses to common style. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) |
Ref | Expression |
---|---|
cbv2.1 | ⊢ Ⅎ𝑥𝜑 |
cbv2.2 | ⊢ Ⅎ𝑦𝜑 |
cbv2.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
cbv2.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
cbv2.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
cbv2 | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv2.2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfri 1512 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | cbv2.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
4 | 3 | nfal 1569 | . . . 4 ⊢ Ⅎ𝑥∀𝑦𝜑 |
5 | 4 | nfri 1512 | . . 3 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
6 | 2, 5 | syl 14 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦𝜑) |
7 | cbv2.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
8 | 7 | nfrd 1513 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) |
9 | cbv2.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
10 | 9 | nfrd 1513 | . . 3 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
11 | cbv2.5 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
12 | 8, 10, 11 | cbv2h 1741 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
13 | 6, 12 | syl 14 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 Ⅎwnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: cbvald 1918 cbvrald 13823 |
Copyright terms: Public domain | W3C validator |