| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbv2 | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Revised to align format of hypotheses to common style. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) |
| Ref | Expression |
|---|---|
| cbv2.1 | ⊢ Ⅎ𝑥𝜑 |
| cbv2.2 | ⊢ Ⅎ𝑦𝜑 |
| cbv2.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
| cbv2.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| cbv2.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| cbv2 | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbv2.2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfri 1533 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) |
| 3 | cbv2.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 4 | 3 | nfal 1590 | . . . 4 ⊢ Ⅎ𝑥∀𝑦𝜑 |
| 5 | 4 | nfri 1533 | . . 3 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
| 6 | 2, 5 | syl 14 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦𝜑) |
| 7 | cbv2.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 8 | 7 | nfrd 1534 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) |
| 9 | cbv2.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 10 | 9 | nfrd 1534 | . . 3 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
| 11 | cbv2.5 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 12 | 8, 10, 11 | cbv2h 1762 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| 13 | 6, 12 | syl 14 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: cbvald 1940 cbvrald 15434 |
| Copyright terms: Public domain | W3C validator |