Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleq12d | GIF version |
Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
eleq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eleq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
eleq12d | ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
2 | 1 | eleq2d 2236 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷)) |
3 | eleq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | eleq1d 2235 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐷 ↔ 𝐵 ∈ 𝐷)) |
5 | 2, 4 | bitrd 187 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: cbvraldva2 2699 cbvrexdva2 2700 cdeqel 2947 ru 2950 sbcel12g 3060 cbvralcsf 3107 cbvrexcsf 3108 cbvreucsf 3109 cbvrabcsf 3110 onintexmid 4550 elvvuni 4668 elrnmpt1 4855 canth 5796 smoeq 6258 smores 6260 smores2 6262 iordsmo 6265 nnaordi 6476 nnaordr 6478 fvixp 6669 cbvixp 6681 mptelixpg 6700 exmidaclem 7164 cc1 7206 cc2lem 7207 cc3 7209 ltapig 7279 ltmpig 7280 fzsubel 9995 elfzp1b 10032 ennnfonelemg 12336 ennnfonelemp1 12339 ennnfonelemnn0 12355 ctiunctlemu1st 12367 ctiunctlemu2nd 12368 ctiunctlemudc 12370 ctiunctlemfo 12372 ismgm 12588 mgm1 12601 istps 12670 tpspropd 12674 eltpsg 12678 isms 13093 mspropd 13118 cnlimci 13282 |
Copyright terms: Public domain | W3C validator |