| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq12d | GIF version | ||
| Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| eleq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eleq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| eleq12d | ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 2 | 1 | eleq2d 2299 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷)) |
| 3 | eleq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | eleq1d 2298 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐷 ↔ 𝐵 ∈ 𝐷)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: cbvraldva2 2772 cbvrexdva2 2773 cdeqel 3024 ru 3027 sbceqbid 3035 sbcel12g 3139 cbvralcsf 3187 cbvrexcsf 3188 cbvreucsf 3189 cbvrabcsf 3190 onintexmid 4662 elvvuni 4780 elrnmpt1 4971 canth 5945 smoeq 6426 smores 6428 smores2 6430 iordsmo 6433 nnaordi 6644 nnaordr 6646 fvixp 6840 cbvixp 6852 mptelixpg 6871 opabfi 7088 exmidaclem 7378 cc1 7439 cc2lem 7440 cc3 7442 ltapig 7513 ltmpig 7514 fzsubel 10244 elfzp1b 10281 wrd2ind 11241 ennnfonelemg 12960 ennnfonelemp1 12963 ennnfonelemnn0 12979 ctiunctlemu1st 12991 ctiunctlemu2nd 12992 ctiunctlemudc 12994 ctiunctlemfo 12996 prdsbasprj 13301 xpsfrnel 13363 ismgm 13376 mgm1 13389 issgrpd 13431 ismndd 13456 eqgfval 13745 ringcl 13962 unitinvcl 14072 aprval 14231 aprap 14235 islmodd 14242 rspcl 14440 rnglidlmmgm 14445 zndvds 14598 istps 14691 tpspropd 14695 eltpsg 14699 isms 15112 mspropd 15137 cnlimci 15332 |
| Copyright terms: Public domain | W3C validator |