| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq12d | GIF version | ||
| Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| eleq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eleq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| eleq12d | ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 2 | 1 | eleq2d 2276 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷)) |
| 3 | eleq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | eleq1d 2275 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐷 ↔ 𝐵 ∈ 𝐷)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: cbvraldva2 2746 cbvrexdva2 2747 cdeqel 2996 ru 2999 sbceqbid 3007 sbcel12g 3110 cbvralcsf 3158 cbvrexcsf 3159 cbvreucsf 3160 cbvrabcsf 3161 onintexmid 4626 elvvuni 4744 elrnmpt1 4935 canth 5907 smoeq 6386 smores 6388 smores2 6390 iordsmo 6393 nnaordi 6604 nnaordr 6606 fvixp 6800 cbvixp 6812 mptelixpg 6831 opabfi 7047 exmidaclem 7333 cc1 7390 cc2lem 7391 cc3 7393 ltapig 7464 ltmpig 7465 fzsubel 10195 elfzp1b 10232 ennnfonelemg 12824 ennnfonelemp1 12827 ennnfonelemnn0 12843 ctiunctlemu1st 12855 ctiunctlemu2nd 12856 ctiunctlemudc 12858 ctiunctlemfo 12860 prdsbasprj 13164 xpsfrnel 13226 ismgm 13239 mgm1 13252 issgrpd 13294 ismndd 13319 eqgfval 13608 ringcl 13825 unitinvcl 13935 aprval 14094 aprap 14098 islmodd 14105 rspcl 14303 rnglidlmmgm 14308 zndvds 14461 istps 14554 tpspropd 14558 eltpsg 14562 isms 14975 mspropd 15000 cnlimci 15195 |
| Copyright terms: Public domain | W3C validator |