| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq12d | GIF version | ||
| Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| eleq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eleq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| eleq12d | ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 2 | 1 | eleq2d 2299 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷)) |
| 3 | eleq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | eleq1d 2298 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐷 ↔ 𝐵 ∈ 𝐷)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: cbvraldva2 2772 cbvrexdva2 2773 cdeqel 3024 ru 3027 sbceqbid 3035 sbcel12g 3139 cbvralcsf 3187 cbvrexcsf 3188 cbvreucsf 3189 cbvrabcsf 3190 onintexmid 4665 elvvuni 4783 elrnmpt1 4975 canth 5958 smoeq 6442 smores 6444 smores2 6446 iordsmo 6449 nnaordi 6662 nnaordr 6664 fvixp 6858 cbvixp 6870 mptelixpg 6889 opabfi 7108 exmidaclem 7398 cc1 7459 cc2lem 7460 cc3 7462 ltapig 7533 ltmpig 7534 fzsubel 10264 elfzp1b 10301 wrd2ind 11263 ennnfonelemg 12982 ennnfonelemp1 12985 ennnfonelemnn0 13001 ctiunctlemu1st 13013 ctiunctlemu2nd 13014 ctiunctlemudc 13016 ctiunctlemfo 13018 prdsbasprj 13323 xpsfrnel 13385 ismgm 13398 mgm1 13411 issgrpd 13453 ismndd 13478 eqgfval 13767 ringcl 13984 unitinvcl 14095 aprval 14254 aprap 14258 islmodd 14265 rspcl 14463 rnglidlmmgm 14468 zndvds 14621 istps 14714 tpspropd 14718 eltpsg 14722 isms 15135 mspropd 15160 cnlimci 15355 |
| Copyright terms: Public domain | W3C validator |