ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfccdeq GIF version

Theorem nfccdeq 2995
Description: Variation of nfcdeq 2994 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfccdeq.1 𝑥𝐴
nfccdeq.2 CondEq(𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
nfccdeq 𝐴 = 𝐵
Distinct variable groups:   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem nfccdeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfccdeq.1 . . . 4 𝑥𝐴
21nfcri 2341 . . 3 𝑥 𝑧𝐴
3 equid 1723 . . . . 5 𝑧 = 𝑧
43cdeqth 2984 . . . 4 CondEq(𝑥 = 𝑦𝑧 = 𝑧)
5 nfccdeq.2 . . . 4 CondEq(𝑥 = 𝑦𝐴 = 𝐵)
64, 5cdeqel 2993 . . 3 CondEq(𝑥 = 𝑦 → (𝑧𝐴𝑧𝐵))
72, 6nfcdeq 2994 . 2 (𝑧𝐴𝑧𝐵)
87eqriv 2201 1 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wcel 2175  wnfc 2334  CondEqwcdeq 2980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-cleq 2197  df-clel 2200  df-nfc 2336  df-cdeq 2981
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator