Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfccdeq | GIF version |
Description: Variation of nfcdeq 2952 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfccdeq.1 | ⊢ Ⅎ𝑥𝐴 |
nfccdeq.2 | ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
nfccdeq | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfccdeq.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcri 2306 | . . 3 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
3 | equid 1694 | . . . . 5 ⊢ 𝑧 = 𝑧 | |
4 | 3 | cdeqth 2942 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → 𝑧 = 𝑧) |
5 | nfccdeq.2 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) | |
6 | 4, 5 | cdeqel 2951 | . . 3 ⊢ CondEq(𝑥 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) |
7 | 2, 6 | nfcdeq 2952 | . 2 ⊢ (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
8 | 7 | eqriv 2167 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 Ⅎwnfc 2299 CondEqwcdeq 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-cdeq 2939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |