| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfccdeq | GIF version | ||
| Description: Variation of nfcdeq 3025 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfccdeq.1 | ⊢ Ⅎ𝑥𝐴 |
| nfccdeq.2 | ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| nfccdeq | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfccdeq.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfcri 2366 | . . 3 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 3 | equid 1747 | . . . . 5 ⊢ 𝑧 = 𝑧 | |
| 4 | 3 | cdeqth 3015 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → 𝑧 = 𝑧) |
| 5 | nfccdeq.2 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 6 | 4, 5 | cdeqel 3024 | . . 3 ⊢ CondEq(𝑥 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) |
| 7 | 2, 6 | nfcdeq 3025 | . 2 ⊢ (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
| 8 | 7 | eqriv 2226 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 Ⅎwnfc 2359 CondEqwcdeq 3011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-cdeq 3012 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |