ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfccdeq GIF version

Theorem nfccdeq 2987
Description: Variation of nfcdeq 2986 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfccdeq.1 𝑥𝐴
nfccdeq.2 CondEq(𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
nfccdeq 𝐴 = 𝐵
Distinct variable groups:   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem nfccdeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfccdeq.1 . . . 4 𝑥𝐴
21nfcri 2333 . . 3 𝑥 𝑧𝐴
3 equid 1715 . . . . 5 𝑧 = 𝑧
43cdeqth 2976 . . . 4 CondEq(𝑥 = 𝑦𝑧 = 𝑧)
5 nfccdeq.2 . . . 4 CondEq(𝑥 = 𝑦𝐴 = 𝐵)
64, 5cdeqel 2985 . . 3 CondEq(𝑥 = 𝑦 → (𝑧𝐴𝑧𝐵))
72, 6nfcdeq 2986 . 2 (𝑧𝐴𝑧𝐵)
87eqriv 2193 1 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  wnfc 2326  CondEqwcdeq 2972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328  df-cdeq 2973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator