| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfccdeq | GIF version | ||
| Description: Variation of nfcdeq 2994 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfccdeq.1 | ⊢ Ⅎ𝑥𝐴 |
| nfccdeq.2 | ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| nfccdeq | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfccdeq.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfcri 2341 | . . 3 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 3 | equid 1723 | . . . . 5 ⊢ 𝑧 = 𝑧 | |
| 4 | 3 | cdeqth 2984 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → 𝑧 = 𝑧) |
| 5 | nfccdeq.2 | . . . 4 ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 6 | 4, 5 | cdeqel 2993 | . . 3 ⊢ CondEq(𝑥 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) |
| 7 | 2, 6 | nfcdeq 2994 | . 2 ⊢ (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
| 8 | 7 | eqriv 2201 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 Ⅎwnfc 2334 CondEqwcdeq 2980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-cleq 2197 df-clel 2200 df-nfc 2336 df-cdeq 2981 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |