ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equid GIF version

Theorem equid 1712
Description: Identity law for equality (reflexivity). Lemma 6 of [Tarski] p. 68. This is often an axiom of equality in textbook systems, but we don't need it as an axiom since it can be proved from our other axioms.

This proof is similar to Tarski's and makes use of a dummy variable 𝑦. It also works in intuitionistic logic, unlike some other possible ways of proving this theorem. (Contributed by NM, 1-Apr-2005.)

Assertion
Ref Expression
equid 𝑥 = 𝑥

Proof of Theorem equid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 a9e 1707 . 2 𝑦 𝑦 = 𝑥
2 ax-17 1537 . . 3 (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥)
3 ax-8 1515 . . . 4 (𝑦 = 𝑥 → (𝑦 = 𝑥𝑥 = 𝑥))
43pm2.43i 49 . . 3 (𝑦 = 𝑥𝑥 = 𝑥)
52, 4exlimih 1604 . 2 (∃𝑦 𝑦 = 𝑥𝑥 = 𝑥)
61, 5ax-mp 5 1 𝑥 = 𝑥
Colors of variables: wff set class
Syntax hints:  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1460  ax-ie2 1505  ax-8 1515  ax-17 1537  ax-i9 1541
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nfequid  1713  stdpc6  1714  equcomi  1715  equveli  1770  sbid  1785  ax16i  1869  exists1  2138  vjust  2761  vex  2763  reu6  2949  nfccdeq  2983  sbc8g  2993  dfnul3  3449  rab0  3475  int0  3884  ruv  4582  dcextest  4613  relop  4812  f1eqcocnv  5834  mpoxopoveq  6293  snexxph  7009
  Copyright terms: Public domain W3C validator