ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equid GIF version

Theorem equid 1725
Description: Identity law for equality (reflexivity). Lemma 6 of [Tarski] p. 68. This is often an axiom of equality in textbook systems, but we don't need it as an axiom since it can be proved from our other axioms.

This proof is similar to Tarski's and makes use of a dummy variable 𝑦. It also works in intuitionistic logic, unlike some other possible ways of proving this theorem. (Contributed by NM, 1-Apr-2005.)

Assertion
Ref Expression
equid 𝑥 = 𝑥

Proof of Theorem equid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 a9e 1720 . 2 𝑦 𝑦 = 𝑥
2 ax-17 1550 . . 3 (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥)
3 ax-8 1528 . . . 4 (𝑦 = 𝑥 → (𝑦 = 𝑥𝑥 = 𝑥))
43pm2.43i 49 . . 3 (𝑦 = 𝑥𝑥 = 𝑥)
52, 4exlimih 1617 . 2 (∃𝑦 𝑦 = 𝑥𝑥 = 𝑥)
61, 5ax-mp 5 1 𝑥 = 𝑥
Colors of variables: wff set class
Syntax hints:  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1473  ax-ie2 1518  ax-8 1528  ax-17 1550  ax-i9 1554
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nfequid  1726  stdpc6  1727  equcomi  1728  equveli  1783  sbid  1798  ax16i  1882  exists1  2151  vjust  2774  vex  2776  reu6  2966  nfccdeq  3000  sbc8g  3010  dfnul3  3467  rab0  3493  int0  3905  ruv  4606  dcextest  4637  relop  4836  f1eqcocnv  5873  mpoxopoveq  6339  snexxph  7067
  Copyright terms: Public domain W3C validator