ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equid GIF version

Theorem equid 1723
Description: Identity law for equality (reflexivity). Lemma 6 of [Tarski] p. 68. This is often an axiom of equality in textbook systems, but we don't need it as an axiom since it can be proved from our other axioms.

This proof is similar to Tarski's and makes use of a dummy variable 𝑦. It also works in intuitionistic logic, unlike some other possible ways of proving this theorem. (Contributed by NM, 1-Apr-2005.)

Assertion
Ref Expression
equid 𝑥 = 𝑥

Proof of Theorem equid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 a9e 1718 . 2 𝑦 𝑦 = 𝑥
2 ax-17 1548 . . 3 (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥)
3 ax-8 1526 . . . 4 (𝑦 = 𝑥 → (𝑦 = 𝑥𝑥 = 𝑥))
43pm2.43i 49 . . 3 (𝑦 = 𝑥𝑥 = 𝑥)
52, 4exlimih 1615 . 2 (∃𝑦 𝑦 = 𝑥𝑥 = 𝑥)
61, 5ax-mp 5 1 𝑥 = 𝑥
Colors of variables: wff set class
Syntax hints:  wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1471  ax-ie2 1516  ax-8 1526  ax-17 1548  ax-i9 1552
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nfequid  1724  stdpc6  1725  equcomi  1726  equveli  1781  sbid  1796  ax16i  1880  exists1  2149  vjust  2772  vex  2774  reu6  2961  nfccdeq  2995  sbc8g  3005  dfnul3  3462  rab0  3488  int0  3898  ruv  4596  dcextest  4627  relop  4826  f1eqcocnv  5850  mpoxopoveq  6316  snexxph  7034
  Copyright terms: Public domain W3C validator