ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplitf GIF version

Theorem fprodsplitf 11522
Description: Split a finite product into two parts. A version of fprodsplit 11487 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodsplitf.kph 𝑘𝜑
fprodsplitf.in (𝜑 → (𝐴𝐵) = ∅)
fprodsplitf.un (𝜑𝑈 = (𝐴𝐵))
fprodsplitf.fi (𝜑𝑈 ∈ Fin)
fprodsplitf.c ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprodsplitf (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑈,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)

Proof of Theorem fprodsplitf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fprodsplitf.in . . 3 (𝜑 → (𝐴𝐵) = ∅)
2 fprodsplitf.un . . 3 (𝜑𝑈 = (𝐴𝐵))
3 fprodsplitf.fi . . 3 (𝜑𝑈 ∈ Fin)
4 fprodsplitf.kph . . . . . 6 𝑘𝜑
5 nfv 1508 . . . . . 6 𝑘 𝑗𝑈
64, 5nfan 1545 . . . . 5 𝑘(𝜑𝑗𝑈)
7 nfcsb1v 3064 . . . . . 6 𝑘𝑗 / 𝑘𝐶
87nfel1 2310 . . . . 5 𝑘𝑗 / 𝑘𝐶 ∈ ℂ
96, 8nfim 1552 . . . 4 𝑘((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)
10 eleq1w 2218 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑈𝑗𝑈))
1110anbi2d 460 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑈) ↔ (𝜑𝑗𝑈)))
12 csbeq1a 3040 . . . . . 6 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
1312eleq1d 2226 . . . . 5 (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ 𝑗 / 𝑘𝐶 ∈ ℂ))
1411, 13imbi12d 233 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑈) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)))
15 fprodsplitf.c . . . 4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
169, 14, 15chvarfv 1680 . . 3 ((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)
171, 2, 3, 16fprodsplit 11487 . 2 (𝜑 → ∏𝑗𝑈 𝑗 / 𝑘𝐶 = (∏𝑗𝐴 𝑗 / 𝑘𝐶 · ∏𝑗𝐵 𝑗 / 𝑘𝐶))
18 nfcv 2299 . . 3 𝑗𝐶
1918, 7, 12cbvprodi 11450 . 2 𝑘𝑈 𝐶 = ∏𝑗𝑈 𝑗 / 𝑘𝐶
2018, 7, 12cbvprodi 11450 . . 3 𝑘𝐴 𝐶 = ∏𝑗𝐴 𝑗 / 𝑘𝐶
2118, 7, 12cbvprodi 11450 . . 3 𝑘𝐵 𝐶 = ∏𝑗𝐵 𝑗 / 𝑘𝐶
2220, 21oveq12i 5833 . 2 (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶) = (∏𝑗𝐴 𝑗 / 𝑘𝐶 · ∏𝑗𝐵 𝑗 / 𝑘𝐶)
2317, 19, 223eqtr4g 2215 1 (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wnf 1440  wcel 2128  csb 3031  cun 3100  cin 3101  c0 3394  (class class class)co 5821  Fincfn 6682  cc 7724   · cmul 7731  cprod 11440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-frec 6335  df-1o 6360  df-oadd 6364  df-er 6477  df-en 6683  df-dom 6684  df-fin 6685  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-fz 9906  df-fzo 10035  df-seqfrec 10338  df-exp 10412  df-ihash 10643  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-clim 11169  df-proddc 11441
This theorem is referenced by:  fprodsplitsn  11523  fprodsplit1f  11524
  Copyright terms: Public domain W3C validator