| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fprodsplitf | GIF version | ||
| Description: Split a finite product into two parts. A version of fprodsplit 11762 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| fprodsplitf.kph | ⊢ Ⅎ𝑘𝜑 | 
| fprodsplitf.in | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | 
| fprodsplitf.un | ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | 
| fprodsplitf.fi | ⊢ (𝜑 → 𝑈 ∈ Fin) | 
| fprodsplitf.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) | 
| Ref | Expression | 
|---|---|
| fprodsplitf | ⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fprodsplitf.in | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 2 | fprodsplitf.un | . . 3 ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | |
| 3 | fprodsplitf.fi | . . 3 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
| 4 | fprodsplitf.kph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
| 5 | nfv 1542 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑈 | |
| 6 | 4, 5 | nfan 1579 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑈) | 
| 7 | nfcsb1v 3117 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 | |
| 8 | 7 | nfel1 2350 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ | 
| 9 | 6, 8 | nfim 1586 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) | 
| 10 | eleq1w 2257 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑈 ↔ 𝑗 ∈ 𝑈)) | |
| 11 | 10 | anbi2d 464 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑈) ↔ (𝜑 ∧ 𝑗 ∈ 𝑈))) | 
| 12 | csbeq1a 3093 | . . . . . 6 ⊢ (𝑘 = 𝑗 → 𝐶 = ⦋𝑗 / 𝑘⦌𝐶) | |
| 13 | 12 | eleq1d 2265 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ)) | 
| 14 | 11, 13 | imbi12d 234 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ))) | 
| 15 | fprodsplitf.c | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) | |
| 16 | 9, 14, 15 | chvarfv 1714 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) | 
| 17 | 1, 2, 3, 16 | fprodsplit 11762 | . 2 ⊢ (𝜑 → ∏𝑗 ∈ 𝑈 ⦋𝑗 / 𝑘⦌𝐶 = (∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 · ∏𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶)) | 
| 18 | nfcv 2339 | . . 3 ⊢ Ⅎ𝑗𝐶 | |
| 19 | 18, 7, 12 | cbvprodi 11725 | . 2 ⊢ ∏𝑘 ∈ 𝑈 𝐶 = ∏𝑗 ∈ 𝑈 ⦋𝑗 / 𝑘⦌𝐶 | 
| 20 | 18, 7, 12 | cbvprodi 11725 | . . 3 ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 | 
| 21 | 18, 7, 12 | cbvprodi 11725 | . . 3 ⊢ ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶 | 
| 22 | 20, 21 | oveq12i 5934 | . 2 ⊢ (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶) = (∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 · ∏𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶) | 
| 23 | 17, 19, 22 | 3eqtr4g 2254 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 ⦋csb 3084 ∪ cun 3155 ∩ cin 3156 ∅c0 3450 (class class class)co 5922 Fincfn 6799 ℂcc 7877 · cmul 7884 ∏cprod 11715 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-proddc 11716 | 
| This theorem is referenced by: fprodsplitsn 11798 fprodsplit1f 11799 | 
| Copyright terms: Public domain | W3C validator |