| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > chvar | GIF version | ||
| Description: Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by Mario Carneiro, 3-Oct-2016.) |
| Ref | Expression |
|---|---|
| chvar.1 | ⊢ Ⅎ𝑥𝜓 |
| chvar.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| chvar.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| chvar | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chvar.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | chvar.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | biimpd 144 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 4 | 1, 3 | spim 1762 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
| 5 | chvar.3 | . 2 ⊢ 𝜑 | |
| 6 | 4, 5 | mpg 1475 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: csbhypf 3133 opelopabsb 4310 findes 4655 fvmptssdm 5671 dfoprab4f 6286 dom2lem 6870 uzind4s 9718 fsumsplitf 11763 |
| Copyright terms: Public domain | W3C validator |