ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr3g GIF version

Theorem 3bitr3g 222
Description: More general version of 3bitr3i 210. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.)
Hypotheses
Ref Expression
3bitr3g.1 (𝜑 → (𝜓𝜒))
3bitr3g.2 (𝜓𝜃)
3bitr3g.3 (𝜒𝜏)
Assertion
Ref Expression
3bitr3g (𝜑 → (𝜃𝜏))

Proof of Theorem 3bitr3g
StepHypRef Expression
1 3bitr3g.2 . . 3 (𝜓𝜃)
2 3bitr3g.1 . . 3 (𝜑 → (𝜓𝜒))
31, 2bitr3id 194 . 2 (𝜑 → (𝜃𝜒))
4 3bitr3g.3 . 2 (𝜒𝜏)
53, 4bitrdi 196 1 (𝜑 → (𝜃𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  con2bidc  880  sbal1yz  2052  sbal1  2053  dfsbcq2  3031  iindif2m  4032  opeqex  4335  rabxfrd  4559  eqbrrdv  4815  eqbrrdiv  4816  opelco2g  4889  opelcnvg  4901  ralrnmpt  5776  rexrnmpt  5777  fliftcnv  5918  eusvobj2  5986  f1od2  6379  ottposg  6399  ercnv  6699  exmidpw  7066  djuf1olem  7216  fzen  10235  fihasheq0  11010  divalgb  12431  isprm3  12635  eldvap  15350
  Copyright terms: Public domain W3C validator