ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr3g GIF version

Theorem 3bitr3g 221
Description: More general version of 3bitr3i 209. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.)
Hypotheses
Ref Expression
3bitr3g.1 (𝜑 → (𝜓𝜒))
3bitr3g.2 (𝜓𝜃)
3bitr3g.3 (𝜒𝜏)
Assertion
Ref Expression
3bitr3g (𝜑 → (𝜃𝜏))

Proof of Theorem 3bitr3g
StepHypRef Expression
1 3bitr3g.2 . . 3 (𝜓𝜃)
2 3bitr3g.1 . . 3 (𝜑 → (𝜓𝜒))
31, 2bitr3id 193 . 2 (𝜑 → (𝜃𝜒))
4 3bitr3g.3 . 2 (𝜒𝜏)
53, 4bitrdi 195 1 (𝜑 → (𝜃𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  con2bidc  870  sbal1yz  1994  sbal1  1995  dfsbcq2  2958  iindif2m  3940  opeqex  4234  rabxfrd  4454  eqbrrdv  4708  eqbrrdiv  4709  opelco2g  4779  opelcnvg  4791  ralrnmpt  5638  rexrnmpt  5639  fliftcnv  5774  eusvobj2  5839  f1od2  6214  ottposg  6234  ercnv  6534  exmidpw  6886  djuf1olem  7030  fzen  9999  fihasheq0  10728  divalgb  11884  isprm3  12072  eldvap  13445
  Copyright terms: Public domain W3C validator