ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr3g GIF version

Theorem 3bitr3g 222
Description: More general version of 3bitr3i 210. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.)
Hypotheses
Ref Expression
3bitr3g.1 (𝜑 → (𝜓𝜒))
3bitr3g.2 (𝜓𝜃)
3bitr3g.3 (𝜒𝜏)
Assertion
Ref Expression
3bitr3g (𝜑 → (𝜃𝜏))

Proof of Theorem 3bitr3g
StepHypRef Expression
1 3bitr3g.2 . . 3 (𝜓𝜃)
2 3bitr3g.1 . . 3 (𝜑 → (𝜓𝜒))
31, 2bitr3id 194 . 2 (𝜑 → (𝜃𝜒))
4 3bitr3g.3 . 2 (𝜒𝜏)
53, 4bitrdi 196 1 (𝜑 → (𝜃𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  con2bidc  876  sbal1yz  2028  sbal1  2029  dfsbcq2  3000  iindif2m  3994  opeqex  4293  rabxfrd  4515  eqbrrdv  4771  eqbrrdiv  4772  opelco2g  4845  opelcnvg  4857  ralrnmpt  5721  rexrnmpt  5722  fliftcnv  5863  eusvobj2  5929  f1od2  6320  ottposg  6340  ercnv  6640  exmidpw  7004  djuf1olem  7154  fzen  10164  fihasheq0  10936  divalgb  12178  isprm3  12382  eldvap  15096
  Copyright terms: Public domain W3C validator