ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr3g GIF version

Theorem 3bitr3g 222
Description: More general version of 3bitr3i 210. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.)
Hypotheses
Ref Expression
3bitr3g.1 (𝜑 → (𝜓𝜒))
3bitr3g.2 (𝜓𝜃)
3bitr3g.3 (𝜒𝜏)
Assertion
Ref Expression
3bitr3g (𝜑 → (𝜃𝜏))

Proof of Theorem 3bitr3g
StepHypRef Expression
1 3bitr3g.2 . . 3 (𝜓𝜃)
2 3bitr3g.1 . . 3 (𝜑 → (𝜓𝜒))
31, 2bitr3id 194 . 2 (𝜑 → (𝜃𝜒))
4 3bitr3g.3 . 2 (𝜒𝜏)
53, 4bitrdi 196 1 (𝜑 → (𝜃𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  con2bidc  876  sbal1yz  2020  sbal1  2021  dfsbcq2  2992  iindif2m  3984  opeqex  4282  rabxfrd  4504  eqbrrdv  4760  eqbrrdiv  4761  opelco2g  4834  opelcnvg  4846  ralrnmpt  5704  rexrnmpt  5705  fliftcnv  5842  eusvobj2  5908  f1od2  6293  ottposg  6313  ercnv  6613  exmidpw  6969  djuf1olem  7119  fzen  10118  fihasheq0  10885  divalgb  12090  isprm3  12286  eldvap  14918
  Copyright terms: Public domain W3C validator