Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr3g | GIF version |
Description: More general version of 3bitr3i 209. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3id 193 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | bitrdi 195 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: con2bidc 865 sbal1yz 1989 sbal1 1990 dfsbcq2 2954 iindif2m 3933 opeqex 4227 rabxfrd 4447 eqbrrdv 4701 eqbrrdiv 4702 opelco2g 4772 opelcnvg 4784 ralrnmpt 5627 rexrnmpt 5628 fliftcnv 5763 eusvobj2 5828 f1od2 6203 ottposg 6223 ercnv 6522 exmidpw 6874 djuf1olem 7018 fzen 9978 fihasheq0 10707 divalgb 11862 isprm3 12050 eldvap 13291 |
Copyright terms: Public domain | W3C validator |