ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr3g GIF version

Theorem 3bitr3g 222
Description: More general version of 3bitr3i 210. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.)
Hypotheses
Ref Expression
3bitr3g.1 (𝜑 → (𝜓𝜒))
3bitr3g.2 (𝜓𝜃)
3bitr3g.3 (𝜒𝜏)
Assertion
Ref Expression
3bitr3g (𝜑 → (𝜃𝜏))

Proof of Theorem 3bitr3g
StepHypRef Expression
1 3bitr3g.2 . . 3 (𝜓𝜃)
2 3bitr3g.1 . . 3 (𝜑 → (𝜓𝜒))
31, 2bitr3id 194 . 2 (𝜑 → (𝜃𝜒))
4 3bitr3g.3 . 2 (𝜒𝜏)
53, 4bitrdi 196 1 (𝜑 → (𝜃𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  con2bidc  876  sbal1yz  2028  sbal1  2029  dfsbcq2  3000  iindif2m  3994  opeqex  4292  rabxfrd  4514  eqbrrdv  4770  eqbrrdiv  4771  opelco2g  4844  opelcnvg  4856  ralrnmpt  5716  rexrnmpt  5717  fliftcnv  5854  eusvobj2  5920  f1od2  6311  ottposg  6331  ercnv  6631  exmidpw  6987  djuf1olem  7137  fzen  10147  fihasheq0  10919  divalgb  12155  isprm3  12359  eldvap  15072
  Copyright terms: Public domain W3C validator