Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr3g | GIF version |
Description: More general version of 3bitr3i 209. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3id 193 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | bitrdi 195 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: con2bidc 861 sbal1yz 1981 sbal1 1982 dfsbcq2 2940 iindif2m 3916 opeqex 4209 rabxfrd 4428 eqbrrdv 4682 eqbrrdiv 4683 opelco2g 4753 opelcnvg 4765 ralrnmpt 5608 rexrnmpt 5609 fliftcnv 5742 eusvobj2 5807 f1od2 6179 ottposg 6199 ercnv 6498 exmidpw 6850 djuf1olem 6991 fzen 9938 fihasheq0 10661 divalgb 11808 isprm3 11986 eldvap 13022 |
Copyright terms: Public domain | W3C validator |