ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr3g GIF version

Theorem 3bitr3g 222
Description: More general version of 3bitr3i 210. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.)
Hypotheses
Ref Expression
3bitr3g.1 (𝜑 → (𝜓𝜒))
3bitr3g.2 (𝜓𝜃)
3bitr3g.3 (𝜒𝜏)
Assertion
Ref Expression
3bitr3g (𝜑 → (𝜃𝜏))

Proof of Theorem 3bitr3g
StepHypRef Expression
1 3bitr3g.2 . . 3 (𝜓𝜃)
2 3bitr3g.1 . . 3 (𝜑 → (𝜓𝜒))
31, 2bitr3id 194 . 2 (𝜑 → (𝜃𝜒))
4 3bitr3g.3 . 2 (𝜒𝜏)
53, 4bitrdi 196 1 (𝜑 → (𝜃𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  con2bidc  877  sbal1yz  2030  sbal1  2031  dfsbcq2  3005  iindif2m  4001  opeqex  4302  rabxfrd  4524  eqbrrdv  4780  eqbrrdiv  4781  opelco2g  4854  opelcnvg  4866  ralrnmpt  5735  rexrnmpt  5736  fliftcnv  5877  eusvobj2  5943  f1od2  6334  ottposg  6354  ercnv  6654  exmidpw  7020  djuf1olem  7170  fzen  10185  fihasheq0  10960  divalgb  12311  isprm3  12515  eldvap  15229
  Copyright terms: Public domain W3C validator