| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3g | GIF version | ||
| Description: More general version of 3bitr3i 210. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| 3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
| 3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| 3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3id 194 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 5 | 3, 4 | bitrdi 196 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: con2bidc 877 sbal1yz 2030 sbal1 2031 dfsbcq2 3005 iindif2m 4001 opeqex 4302 rabxfrd 4524 eqbrrdv 4780 eqbrrdiv 4781 opelco2g 4854 opelcnvg 4866 ralrnmpt 5735 rexrnmpt 5736 fliftcnv 5877 eusvobj2 5943 f1od2 6334 ottposg 6354 ercnv 6654 exmidpw 7020 djuf1olem 7170 fzen 10185 fihasheq0 10960 divalgb 12311 isprm3 12515 eldvap 15229 |
| Copyright terms: Public domain | W3C validator |