ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralf0 GIF version

Theorem ralf0 3553
Description: The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.)
Hypothesis
Ref Expression
ralf0.1 ¬ 𝜑
Assertion
Ref Expression
ralf0 (∀𝑥𝐴 𝜑𝐴 = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralf0
StepHypRef Expression
1 ralf0.1 . . . . 5 ¬ 𝜑
2 con3 643 . . . . 5 ((𝑥𝐴𝜑) → (¬ 𝜑 → ¬ 𝑥𝐴))
31, 2mpi 15 . . . 4 ((𝑥𝐴𝜑) → ¬ 𝑥𝐴)
43alimi 1469 . . 3 (∀𝑥(𝑥𝐴𝜑) → ∀𝑥 ¬ 𝑥𝐴)
5 df-ral 2480 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
6 eq0 3469 . . 3 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
74, 5, 63imtr4i 201 . 2 (∀𝑥𝐴 𝜑𝐴 = ∅)
8 rzal 3548 . 2 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
97, 8impbii 126 1 (∀𝑥𝐴 𝜑𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wal 1362   = wceq 1364  wcel 2167  wral 2475  c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-v 2765  df-dif 3159  df-nul 3451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator