![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralf0 | GIF version |
Description: The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.) |
Ref | Expression |
---|---|
ralf0.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
ralf0 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralf0.1 | . . . . 5 ⊢ ¬ 𝜑 | |
2 | con3 643 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (¬ 𝜑 → ¬ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | mpi 15 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → ¬ 𝑥 ∈ 𝐴) |
4 | 3 | alimi 1466 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
5 | df-ral 2477 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
6 | eq0 3465 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
7 | 4, 5, 6 | 3imtr4i 201 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝐴 = ∅) |
8 | rzal 3544 | . 2 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | |
9 | 7, 8 | impbii 126 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∅c0 3446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-v 2762 df-dif 3155 df-nul 3447 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |