ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralf0 GIF version

Theorem ralf0 3518
Description: The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.)
Hypothesis
Ref Expression
ralf0.1 ¬ 𝜑
Assertion
Ref Expression
ralf0 (∀𝑥𝐴 𝜑𝐴 = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralf0
StepHypRef Expression
1 ralf0.1 . . . . 5 ¬ 𝜑
2 con3 637 . . . . 5 ((𝑥𝐴𝜑) → (¬ 𝜑 → ¬ 𝑥𝐴))
31, 2mpi 15 . . . 4 ((𝑥𝐴𝜑) → ¬ 𝑥𝐴)
43alimi 1448 . . 3 (∀𝑥(𝑥𝐴𝜑) → ∀𝑥 ¬ 𝑥𝐴)
5 df-ral 2453 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
6 eq0 3433 . . 3 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
74, 5, 63imtr4i 200 . 2 (∀𝑥𝐴 𝜑𝐴 = ∅)
8 rzal 3512 . 2 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
97, 8impbii 125 1 (∀𝑥𝐴 𝜑𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wal 1346   = wceq 1348  wcel 2141  wral 2448  c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-v 2732  df-dif 3123  df-nul 3415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator