Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralf0 | GIF version |
Description: The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.) |
Ref | Expression |
---|---|
ralf0.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
ralf0 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralf0.1 | . . . . 5 ⊢ ¬ 𝜑 | |
2 | con3 632 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (¬ 𝜑 → ¬ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | mpi 15 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → ¬ 𝑥 ∈ 𝐴) |
4 | 3 | alimi 1432 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
5 | df-ral 2437 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
6 | eq0 3408 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
7 | 4, 5, 6 | 3imtr4i 200 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝐴 = ∅) |
8 | rzal 3487 | . 2 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | |
9 | 7, 8 | impbii 125 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∀wal 1330 = wceq 1332 ∈ wcel 2125 ∀wral 2432 ∅c0 3390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-v 2711 df-dif 3100 df-nul 3391 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |