| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralf0 | GIF version | ||
| Description: The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.) |
| Ref | Expression |
|---|---|
| ralf0.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| ralf0 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralf0.1 | . . . . 5 ⊢ ¬ 𝜑 | |
| 2 | con3 643 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (¬ 𝜑 → ¬ 𝑥 ∈ 𝐴)) | |
| 3 | 1, 2 | mpi 15 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → ¬ 𝑥 ∈ 𝐴) |
| 4 | 3 | alimi 1469 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 5 | df-ral 2480 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 6 | eq0 3469 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 7 | 4, 5, 6 | 3imtr4i 201 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝐴 = ∅) |
| 8 | rzal 3548 | . 2 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | |
| 9 | 7, 8 | impbii 126 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∅c0 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-nul 3451 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |