ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltleletr GIF version

Theorem ltleletr 8136
Description: Transitive law, weaker form of (𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶. (Contributed by AV, 14-Oct-2018.)
Assertion
Ref Expression
ltleletr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem ltleletr
StepHypRef Expression
1 lttr 8128 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 < 𝐴𝐴 < 𝐵) → 𝐶 < 𝐵))
213coml 1212 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 < 𝐴𝐴 < 𝐵) → 𝐶 < 𝐵))
32expcomd 1460 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 < 𝐴𝐶 < 𝐵)))
4 con3 643 . . . 4 ((𝐶 < 𝐴𝐶 < 𝐵) → (¬ 𝐶 < 𝐵 → ¬ 𝐶 < 𝐴))
53, 4syl6 33 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (¬ 𝐶 < 𝐵 → ¬ 𝐶 < 𝐴)))
6 lenlt 8130 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
763adant1 1017 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
8 lenlt 8130 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
983adant2 1018 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
107, 9imbi12d 234 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵𝐶𝐴𝐶) ↔ (¬ 𝐶 < 𝐵 → ¬ 𝐶 < 𝐴)))
115, 10sylibrd 169 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐵𝐶𝐴𝐶)))
1211impd 254 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980  wcel 2175   class class class wbr 4043  cr 7906   < clt 8089  cle 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-pre-lttrn 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4679  df-cnv 4681  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095
This theorem is referenced by:  nn0ge2m1nn  9337  lbzbi  9719  iseqf1olemqk  10633  wrdlenge2n0  11004  gausslemma2dlem3  15458  gausslemma2dlem4  15459
  Copyright terms: Public domain W3C validator