Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recseq | GIF version |
Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
recseq | ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5485 | . . . . . . . 8 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑎 ↾ 𝑐)) = (𝐺‘(𝑎 ↾ 𝑐))) | |
2 | 1 | eqeq2d 2177 | . . . . . . 7 ⊢ (𝐹 = 𝐺 → ((𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)) ↔ (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))) |
3 | 2 | ralbidv 2466 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)) ↔ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))) |
4 | 3 | anbi2d 460 | . . . . 5 ⊢ (𝐹 = 𝐺 → ((𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐))) ↔ (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐))))) |
5 | 4 | rexbidv 2467 | . . . 4 ⊢ (𝐹 = 𝐺 → (∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐))) ↔ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐))))) |
6 | 5 | abbidv 2284 | . . 3 ⊢ (𝐹 = 𝐺 → {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))}) |
7 | 6 | unieqd 3800 | . 2 ⊢ (𝐹 = 𝐺 → ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))}) |
8 | df-recs 6273 | . 2 ⊢ recs(𝐹) = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} | |
9 | df-recs 6273 | . 2 ⊢ recs(𝐺) = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))} | |
10 | 7, 8, 9 | 3eqtr4g 2224 | 1 ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 {cab 2151 ∀wral 2444 ∃wrex 2445 ∪ cuni 3789 Oncon0 4341 ↾ cres 4606 Fn wfn 5183 ‘cfv 5188 recscrecs 6272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-recs 6273 |
This theorem is referenced by: rdgeq1 6339 rdgeq2 6340 freceq1 6360 freceq2 6361 frecsuclem 6374 |
Copyright terms: Public domain | W3C validator |