| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recseq | GIF version | ||
| Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| recseq | ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5557 | . . . . . . . 8 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑎 ↾ 𝑐)) = (𝐺‘(𝑎 ↾ 𝑐))) | |
| 2 | 1 | eqeq2d 2208 | . . . . . . 7 ⊢ (𝐹 = 𝐺 → ((𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)) ↔ (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))) |
| 3 | 2 | ralbidv 2497 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)) ↔ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))) |
| 4 | 3 | anbi2d 464 | . . . . 5 ⊢ (𝐹 = 𝐺 → ((𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐))) ↔ (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐))))) |
| 5 | 4 | rexbidv 2498 | . . . 4 ⊢ (𝐹 = 𝐺 → (∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐))) ↔ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐))))) |
| 6 | 5 | abbidv 2314 | . . 3 ⊢ (𝐹 = 𝐺 → {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))}) |
| 7 | 6 | unieqd 3850 | . 2 ⊢ (𝐹 = 𝐺 → ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))}) |
| 8 | df-recs 6363 | . 2 ⊢ recs(𝐹) = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} | |
| 9 | df-recs 6363 | . 2 ⊢ recs(𝐺) = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))} | |
| 10 | 7, 8, 9 | 3eqtr4g 2254 | 1 ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 {cab 2182 ∀wral 2475 ∃wrex 2476 ∪ cuni 3839 Oncon0 4398 ↾ cres 4665 Fn wfn 5253 ‘cfv 5258 recscrecs 6362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-recs 6363 |
| This theorem is referenced by: rdgeq1 6429 rdgeq2 6430 freceq1 6450 freceq2 6451 frecsuclem 6464 |
| Copyright terms: Public domain | W3C validator |