ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recseq GIF version

Theorem recseq 6359
Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
recseq (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺))

Proof of Theorem recseq
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5553 . . . . . . . 8 (𝐹 = 𝐺 → (𝐹‘(𝑎𝑐)) = (𝐺‘(𝑎𝑐)))
21eqeq2d 2205 . . . . . . 7 (𝐹 = 𝐺 → ((𝑎𝑐) = (𝐹‘(𝑎𝑐)) ↔ (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
32ralbidv 2494 . . . . . 6 (𝐹 = 𝐺 → (∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐)) ↔ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
43anbi2d 464 . . . . 5 (𝐹 = 𝐺 → ((𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐))) ↔ (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))))
54rexbidv 2495 . . . 4 (𝐹 = 𝐺 → (∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐))) ↔ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))))
65abbidv 2311 . . 3 (𝐹 = 𝐺 → {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐)))} = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))})
76unieqd 3846 . 2 (𝐹 = 𝐺 {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐)))} = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))})
8 df-recs 6358 . 2 recs(𝐹) = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐)))}
9 df-recs 6358 . 2 recs(𝐺) = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))}
107, 8, 93eqtr4g 2251 1 (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  {cab 2179  wral 2472  wrex 2473   cuni 3835  Oncon0 4394  cres 4661   Fn wfn 5249  cfv 5254  recscrecs 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-recs 6358
This theorem is referenced by:  rdgeq1  6424  rdgeq2  6425  freceq1  6445  freceq2  6446  frecsuclem  6459
  Copyright terms: Public domain W3C validator