Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recseq | GIF version |
Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
recseq | ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5495 | . . . . . . . 8 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑎 ↾ 𝑐)) = (𝐺‘(𝑎 ↾ 𝑐))) | |
2 | 1 | eqeq2d 2182 | . . . . . . 7 ⊢ (𝐹 = 𝐺 → ((𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)) ↔ (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))) |
3 | 2 | ralbidv 2470 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)) ↔ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))) |
4 | 3 | anbi2d 461 | . . . . 5 ⊢ (𝐹 = 𝐺 → ((𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐))) ↔ (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐))))) |
5 | 4 | rexbidv 2471 | . . . 4 ⊢ (𝐹 = 𝐺 → (∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐))) ↔ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐))))) |
6 | 5 | abbidv 2288 | . . 3 ⊢ (𝐹 = 𝐺 → {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))}) |
7 | 6 | unieqd 3807 | . 2 ⊢ (𝐹 = 𝐺 → ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))}) |
8 | df-recs 6284 | . 2 ⊢ recs(𝐹) = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} | |
9 | df-recs 6284 | . 2 ⊢ recs(𝐺) = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐺‘(𝑎 ↾ 𝑐)))} | |
10 | 7, 8, 9 | 3eqtr4g 2228 | 1 ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 {cab 2156 ∀wral 2448 ∃wrex 2449 ∪ cuni 3796 Oncon0 4348 ↾ cres 4613 Fn wfn 5193 ‘cfv 5198 recscrecs 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-recs 6284 |
This theorem is referenced by: rdgeq1 6350 rdgeq2 6351 freceq1 6371 freceq2 6372 frecsuclem 6385 |
Copyright terms: Public domain | W3C validator |