| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr1onlemssrecs | GIF version | ||
| Description: Lemma for tfr1on 6496. The union of functions acceptable for tfr1on 6496 is a subset of recs. (Contributed by Jim Kingdon, 15-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr1onlemssrecs.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| tfr1onlemssrecs.x | ⊢ (𝜑 → Ord 𝑋) |
| Ref | Expression |
|---|---|
| tfr1onlemssrecs | ⊢ (𝜑 → ∪ 𝐴 ⊆ recs(𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr1onlemssrecs.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 2 | tfr1onlemssrecs.x | . . . . . 6 ⊢ (𝜑 → Ord 𝑋) | |
| 3 | ordsson 4584 | . . . . . 6 ⊢ (Ord 𝑋 → 𝑋 ⊆ On) | |
| 4 | ssrexv 3289 | . . . . . 6 ⊢ (𝑋 ⊆ On → (∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))))) | |
| 5 | 2, 3, 4 | 3syl 17 | . . . . 5 ⊢ (𝜑 → (∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))))) |
| 6 | 5 | ss2abdv 3297 | . . . 4 ⊢ (𝜑 → {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
| 7 | 1, 6 | eqsstrid 3270 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
| 8 | 7 | unissd 3912 | . 2 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
| 9 | df-recs 6451 | . 2 ⊢ recs(𝐺) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 10 | 8, 9 | sseqtrrdi 3273 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ recs(𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 {cab 2215 ∀wral 2508 ∃wrex 2509 ⊆ wss 3197 ∪ cuni 3888 Ord word 4453 Oncon0 4454 ↾ cres 4721 Fn wfn 5313 ‘cfv 5318 recscrecs 6450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 df-recs 6451 |
| This theorem is referenced by: tfr1onlembfn 6490 tfr1onlemubacc 6492 tfr1onlemres 6495 |
| Copyright terms: Public domain | W3C validator |