![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfr1onlemssrecs | GIF version |
Description: Lemma for tfr1on 6405. The union of functions acceptable for tfr1on 6405 is a subset of recs. (Contributed by Jim Kingdon, 15-Mar-2022.) |
Ref | Expression |
---|---|
tfr1onlemssrecs.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
tfr1onlemssrecs.x | ⊢ (𝜑 → Ord 𝑋) |
Ref | Expression |
---|---|
tfr1onlemssrecs | ⊢ (𝜑 → ∪ 𝐴 ⊆ recs(𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfr1onlemssrecs.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
2 | tfr1onlemssrecs.x | . . . . . 6 ⊢ (𝜑 → Ord 𝑋) | |
3 | ordsson 4525 | . . . . . 6 ⊢ (Ord 𝑋 → 𝑋 ⊆ On) | |
4 | ssrexv 3245 | . . . . . 6 ⊢ (𝑋 ⊆ On → (∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))))) | |
5 | 2, 3, 4 | 3syl 17 | . . . . 5 ⊢ (𝜑 → (∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))))) |
6 | 5 | ss2abdv 3253 | . . . 4 ⊢ (𝜑 → {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
7 | 1, 6 | eqsstrid 3226 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
8 | 7 | unissd 3860 | . 2 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
9 | df-recs 6360 | . 2 ⊢ recs(𝐺) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
10 | 8, 9 | sseqtrrdi 3229 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ recs(𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 {cab 2179 ∀wral 2472 ∃wrex 2473 ⊆ wss 3154 ∪ cuni 3836 Ord word 4394 Oncon0 4395 ↾ cres 4662 Fn wfn 5250 ‘cfv 5255 recscrecs 6359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-in 3160 df-ss 3167 df-uni 3837 df-tr 4129 df-iord 4398 df-on 4400 df-recs 6360 |
This theorem is referenced by: tfr1onlembfn 6399 tfr1onlemubacc 6401 tfr1onlemres 6404 |
Copyright terms: Public domain | W3C validator |