Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfr1onlemssrecs | GIF version |
Description: Lemma for tfr1on 6329. The union of functions acceptable for tfr1on 6329 is a subset of recs. (Contributed by Jim Kingdon, 15-Mar-2022.) |
Ref | Expression |
---|---|
tfr1onlemssrecs.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
tfr1onlemssrecs.x | ⊢ (𝜑 → Ord 𝑋) |
Ref | Expression |
---|---|
tfr1onlemssrecs | ⊢ (𝜑 → ∪ 𝐴 ⊆ recs(𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfr1onlemssrecs.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
2 | tfr1onlemssrecs.x | . . . . . 6 ⊢ (𝜑 → Ord 𝑋) | |
3 | ordsson 4476 | . . . . . 6 ⊢ (Ord 𝑋 → 𝑋 ⊆ On) | |
4 | ssrexv 3212 | . . . . . 6 ⊢ (𝑋 ⊆ On → (∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))))) | |
5 | 2, 3, 4 | 3syl 17 | . . . . 5 ⊢ (𝜑 → (∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))))) |
6 | 5 | ss2abdv 3220 | . . . 4 ⊢ (𝜑 → {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
7 | 1, 6 | eqsstrid 3193 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
8 | 7 | unissd 3820 | . 2 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
9 | df-recs 6284 | . 2 ⊢ recs(𝐺) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
10 | 8, 9 | sseqtrrdi 3196 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ recs(𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 {cab 2156 ∀wral 2448 ∃wrex 2449 ⊆ wss 3121 ∪ cuni 3796 Ord word 4347 Oncon0 4348 ↾ cres 4613 Fn wfn 5193 ‘cfv 5198 recscrecs 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-recs 6284 |
This theorem is referenced by: tfr1onlembfn 6323 tfr1onlemubacc 6325 tfr1onlemres 6328 |
Copyright terms: Public domain | W3C validator |