| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr1onlemssrecs | GIF version | ||
| Description: Lemma for tfr1on 6459. The union of functions acceptable for tfr1on 6459 is a subset of recs. (Contributed by Jim Kingdon, 15-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr1onlemssrecs.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| tfr1onlemssrecs.x | ⊢ (𝜑 → Ord 𝑋) |
| Ref | Expression |
|---|---|
| tfr1onlemssrecs | ⊢ (𝜑 → ∪ 𝐴 ⊆ recs(𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr1onlemssrecs.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 2 | tfr1onlemssrecs.x | . . . . . 6 ⊢ (𝜑 → Ord 𝑋) | |
| 3 | ordsson 4558 | . . . . . 6 ⊢ (Ord 𝑋 → 𝑋 ⊆ On) | |
| 4 | ssrexv 3266 | . . . . . 6 ⊢ (𝑋 ⊆ On → (∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))))) | |
| 5 | 2, 3, 4 | 3syl 17 | . . . . 5 ⊢ (𝜑 → (∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))))) |
| 6 | 5 | ss2abdv 3274 | . . . 4 ⊢ (𝜑 → {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
| 7 | 1, 6 | eqsstrid 3247 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
| 8 | 7 | unissd 3888 | . 2 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
| 9 | df-recs 6414 | . 2 ⊢ recs(𝐺) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 10 | 8, 9 | sseqtrrdi 3250 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ recs(𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 {cab 2193 ∀wral 2486 ∃wrex 2487 ⊆ wss 3174 ∪ cuni 3864 Ord word 4427 Oncon0 4428 ↾ cres 4695 Fn wfn 5285 ‘cfv 5290 recscrecs 6413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-in 3180 df-ss 3187 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 df-recs 6414 |
| This theorem is referenced by: tfr1onlembfn 6453 tfr1onlemubacc 6455 tfr1onlemres 6458 |
| Copyright terms: Public domain | W3C validator |