ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemssrecs GIF version

Theorem tfr1onlemssrecs 6448
Description: Lemma for tfr1on 6459. The union of functions acceptable for tfr1on 6459 is a subset of recs. (Contributed by Jim Kingdon, 15-Mar-2022.)
Hypotheses
Ref Expression
tfr1onlemssrecs.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlemssrecs.x (𝜑 → Ord 𝑋)
Assertion
Ref Expression
tfr1onlemssrecs (𝜑 𝐴 ⊆ recs(𝐺))
Distinct variable groups:   𝑓,𝐺,𝑥,𝑦   𝑥,𝑋   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦,𝑓)   𝑋(𝑦,𝑓)

Proof of Theorem tfr1onlemssrecs
StepHypRef Expression
1 tfr1onlemssrecs.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
2 tfr1onlemssrecs.x . . . . . 6 (𝜑 → Ord 𝑋)
3 ordsson 4558 . . . . . 6 (Ord 𝑋𝑋 ⊆ On)
4 ssrexv 3266 . . . . . 6 (𝑋 ⊆ On → (∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
52, 3, 43syl 17 . . . . 5 (𝜑 → (∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
65ss2abdv 3274 . . . 4 (𝜑 → {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
71, 6eqsstrid 3247 . . 3 (𝜑𝐴 ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
87unissd 3888 . 2 (𝜑 𝐴 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
9 df-recs 6414 . 2 recs(𝐺) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
108, 9sseqtrrdi 3250 1 (𝜑 𝐴 ⊆ recs(𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  {cab 2193  wral 2486  wrex 2487  wss 3174   cuni 3864  Ord word 4427  Oncon0 4428  cres 4695   Fn wfn 5285  cfv 5290  recscrecs 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-uni 3865  df-tr 4159  df-iord 4431  df-on 4433  df-recs 6414
This theorem is referenced by:  tfr1onlembfn  6453  tfr1onlemubacc  6455  tfr1onlemres  6458
  Copyright terms: Public domain W3C validator