| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrecs | GIF version | ||
| Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| nfrecs.f | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfrecs | ⊢ Ⅎ𝑥recs(𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-recs 6372 | . 2 ⊢ recs(𝐹) = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} | |
| 2 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑥On | |
| 3 | nfv 1542 | . . . . . 6 ⊢ Ⅎ𝑥 𝑎 Fn 𝑏 | |
| 4 | nfcv 2339 | . . . . . . 7 ⊢ Ⅎ𝑥𝑏 | |
| 5 | nfrecs.f | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
| 6 | nfcv 2339 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑎 ↾ 𝑐) | |
| 7 | 5, 6 | nffv 5571 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘(𝑎 ↾ 𝑐)) |
| 8 | 7 | nfeq2 2351 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)) |
| 9 | 4, 8 | nfralxy 2535 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)) |
| 10 | 3, 9 | nfan 1579 | . . . . 5 ⊢ Ⅎ𝑥(𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐))) |
| 11 | 2, 10 | nfrexw 2536 | . . . 4 ⊢ Ⅎ𝑥∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐))) |
| 12 | 11 | nfab 2344 | . . 3 ⊢ Ⅎ𝑥{𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} |
| 13 | 12 | nfuni 3846 | . 2 ⊢ Ⅎ𝑥∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} |
| 14 | 1, 13 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥recs(𝐹) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 {cab 2182 Ⅎwnfc 2326 ∀wral 2475 ∃wrex 2476 ∪ cuni 3840 Oncon0 4399 ↾ cres 4666 Fn wfn 5254 ‘cfv 5259 recscrecs 6371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-recs 6372 |
| This theorem is referenced by: nffrec 6463 |
| Copyright terms: Public domain | W3C validator |