Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrecs | GIF version |
Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
nfrecs.f | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfrecs | ⊢ Ⅎ𝑥recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-recs 6273 | . 2 ⊢ recs(𝐹) = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} | |
2 | nfcv 2308 | . . . . 5 ⊢ Ⅎ𝑥On | |
3 | nfv 1516 | . . . . . 6 ⊢ Ⅎ𝑥 𝑎 Fn 𝑏 | |
4 | nfcv 2308 | . . . . . . 7 ⊢ Ⅎ𝑥𝑏 | |
5 | nfrecs.f | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
6 | nfcv 2308 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑎 ↾ 𝑐) | |
7 | 5, 6 | nffv 5496 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘(𝑎 ↾ 𝑐)) |
8 | 7 | nfeq2 2320 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)) |
9 | 4, 8 | nfralxy 2504 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)) |
10 | 3, 9 | nfan 1553 | . . . . 5 ⊢ Ⅎ𝑥(𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐))) |
11 | 2, 10 | nfrexxy 2505 | . . . 4 ⊢ Ⅎ𝑥∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐))) |
12 | 11 | nfab 2313 | . . 3 ⊢ Ⅎ𝑥{𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} |
13 | 12 | nfuni 3795 | . 2 ⊢ Ⅎ𝑥∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} |
14 | 1, 13 | nfcxfr 2305 | 1 ⊢ Ⅎ𝑥recs(𝐹) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 {cab 2151 Ⅎwnfc 2295 ∀wral 2444 ∃wrex 2445 ∪ cuni 3789 Oncon0 4341 ↾ cres 4606 Fn wfn 5183 ‘cfv 5188 recscrecs 6272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-recs 6273 |
This theorem is referenced by: nffrec 6364 |
Copyright terms: Public domain | W3C validator |