| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrecs | GIF version | ||
| Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| nfrecs.f | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfrecs | ⊢ Ⅎ𝑥recs(𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-recs 6421 | . 2 ⊢ recs(𝐹) = ∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} | |
| 2 | nfcv 2352 | . . . . 5 ⊢ Ⅎ𝑥On | |
| 3 | nfv 1554 | . . . . . 6 ⊢ Ⅎ𝑥 𝑎 Fn 𝑏 | |
| 4 | nfcv 2352 | . . . . . . 7 ⊢ Ⅎ𝑥𝑏 | |
| 5 | nfrecs.f | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
| 6 | nfcv 2352 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑎 ↾ 𝑐) | |
| 7 | 5, 6 | nffv 5613 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘(𝑎 ↾ 𝑐)) |
| 8 | 7 | nfeq2 2364 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)) |
| 9 | 4, 8 | nfralxy 2548 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)) |
| 10 | 3, 9 | nfan 1591 | . . . . 5 ⊢ Ⅎ𝑥(𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐))) |
| 11 | 2, 10 | nfrexw 2549 | . . . 4 ⊢ Ⅎ𝑥∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐))) |
| 12 | 11 | nfab 2357 | . . 3 ⊢ Ⅎ𝑥{𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} |
| 13 | 12 | nfuni 3873 | . 2 ⊢ Ⅎ𝑥∪ {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝐹‘(𝑎 ↾ 𝑐)))} |
| 14 | 1, 13 | nfcxfr 2349 | 1 ⊢ Ⅎ𝑥recs(𝐹) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1375 {cab 2195 Ⅎwnfc 2339 ∀wral 2488 ∃wrex 2489 ∪ cuni 3867 Oncon0 4431 ↾ cres 4698 Fn wfn 5289 ‘cfv 5294 recscrecs 6420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-iota 5254 df-fv 5302 df-recs 6421 |
| This theorem is referenced by: nffrec 6512 |
| Copyright terms: Public domain | W3C validator |