ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrecs GIF version

Theorem nfrecs 6310
Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
nfrecs.f 𝑥𝐹
Assertion
Ref Expression
nfrecs 𝑥recs(𝐹)

Proof of Theorem nfrecs
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-recs 6308 . 2 recs(𝐹) = {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐)))}
2 nfcv 2319 . . . . 5 𝑥On
3 nfv 1528 . . . . . 6 𝑥 𝑎 Fn 𝑏
4 nfcv 2319 . . . . . . 7 𝑥𝑏
5 nfrecs.f . . . . . . . . 9 𝑥𝐹
6 nfcv 2319 . . . . . . . . 9 𝑥(𝑎𝑐)
75, 6nffv 5527 . . . . . . . 8 𝑥(𝐹‘(𝑎𝑐))
87nfeq2 2331 . . . . . . 7 𝑥(𝑎𝑐) = (𝐹‘(𝑎𝑐))
94, 8nfralxy 2515 . . . . . 6 𝑥𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐))
103, 9nfan 1565 . . . . 5 𝑥(𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐)))
112, 10nfrexxy 2516 . . . 4 𝑥𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐)))
1211nfab 2324 . . 3 𝑥{𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐)))}
1312nfuni 3817 . 2 𝑥 {𝑎 ∣ ∃𝑏 ∈ On (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐹‘(𝑎𝑐)))}
141, 13nfcxfr 2316 1 𝑥recs(𝐹)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  {cab 2163  wnfc 2306  wral 2455  wrex 2456   cuni 3811  Oncon0 4365  cres 4630   Fn wfn 5213  cfv 5218  recscrecs 6307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-recs 6308
This theorem is referenced by:  nffrec  6399
  Copyright terms: Public domain W3C validator