ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri2d GIF version

Theorem tfri2d 6277
Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6306). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.)
Hypotheses
Ref Expression
tfri1d.1 𝐹 = recs(𝐺)
tfri1d.2 (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))
Assertion
Ref Expression
tfri2d ((𝜑𝐴 ∈ On) → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
Distinct variable group:   𝑥,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem tfri2d
StepHypRef Expression
1 tfri1d.1 . . . . . 6 𝐹 = recs(𝐺)
2 tfri1d.2 . . . . . 6 (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))
31, 2tfri1d 6276 . . . . 5 (𝜑𝐹 Fn On)
4 fndm 5266 . . . . 5 (𝐹 Fn On → dom 𝐹 = On)
53, 4syl 14 . . . 4 (𝜑 → dom 𝐹 = On)
65eleq2d 2227 . . 3 (𝜑 → (𝐴 ∈ dom 𝐹𝐴 ∈ On))
76biimpar 295 . 2 ((𝜑𝐴 ∈ On) → 𝐴 ∈ dom 𝐹)
81tfr2a 6262 . 2 (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
97, 8syl 14 1 ((𝜑𝐴 ∈ On) → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1333   = wceq 1335  wcel 2128  Vcvv 2712  Oncon0 4322  dom cdm 4583  cres 4585  Fun wfun 5161   Fn wfn 5162  cfv 5167  recscrecs 6245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-suc 4330  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-recs 6246
This theorem is referenced by:  rdgivallem  6322
  Copyright terms: Public domain W3C validator