ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri2d GIF version

Theorem tfri2d 6429
Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6458). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.)
Hypotheses
Ref Expression
tfri1d.1 𝐹 = recs(𝐺)
tfri1d.2 (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))
Assertion
Ref Expression
tfri2d ((𝜑𝐴 ∈ On) → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
Distinct variable group:   𝑥,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem tfri2d
StepHypRef Expression
1 tfri1d.1 . . . . . 6 𝐹 = recs(𝐺)
2 tfri1d.2 . . . . . 6 (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))
31, 2tfri1d 6428 . . . . 5 (𝜑𝐹 Fn On)
4 fndm 5378 . . . . 5 (𝐹 Fn On → dom 𝐹 = On)
53, 4syl 14 . . . 4 (𝜑 → dom 𝐹 = On)
65eleq2d 2276 . . 3 (𝜑 → (𝐴 ∈ dom 𝐹𝐴 ∈ On))
76biimpar 297 . 2 ((𝜑𝐴 ∈ On) → 𝐴 ∈ dom 𝐹)
81tfr2a 6414 . 2 (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
97, 8syl 14 1 ((𝜑𝐴 ∈ On) → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371   = wceq 1373  wcel 2177  Vcvv 2773  Oncon0 4414  dom cdm 4679  cres 4681  Fun wfun 5270   Fn wfn 5271  cfv 5276  recscrecs 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-recs 6398
This theorem is referenced by:  rdgivallem  6474
  Copyright terms: Public domain W3C validator