| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > recsfval | GIF version | ||
| Description: Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.) | 
| Ref | Expression | 
|---|---|
| tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | 
| Ref | Expression | 
|---|---|
| recsfval | ⊢ recs(𝐹) = ∪ 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-recs 6363 | . 2 ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 2 | tfrlem.1 | . . 3 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 3 | 2 | unieqi 3849 | . 2 ⊢ ∪ 𝐴 = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | 
| 4 | 1, 3 | eqtr4i 2220 | 1 ⊢ recs(𝐹) = ∪ 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 = wceq 1364 {cab 2182 ∀wral 2475 ∃wrex 2476 ∪ cuni 3839 Oncon0 4398 ↾ cres 4665 Fn wfn 5253 ‘cfv 5258 recscrecs 6362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3840 df-recs 6363 | 
| This theorem is referenced by: tfrlem6 6374 tfrlem7 6375 tfrlem8 6376 tfrlem9 6377 tfrlemibfn 6386 tfrlemiubacc 6388 tfrlemi14d 6391 tfrexlem 6392 | 
| Copyright terms: Public domain | W3C validator |