![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recsfval | GIF version |
Description: Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
recsfval | ⊢ recs(𝐹) = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-recs 6308 | . 2 ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | tfrlem.1 | . . 3 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
3 | 2 | unieqi 3821 | . 2 ⊢ ∪ 𝐴 = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
4 | 1, 3 | eqtr4i 2201 | 1 ⊢ recs(𝐹) = ∪ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 {cab 2163 ∀wral 2455 ∃wrex 2456 ∪ cuni 3811 Oncon0 4365 ↾ cres 4630 Fn wfn 5213 ‘cfv 5218 recscrecs 6307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-uni 3812 df-recs 6308 |
This theorem is referenced by: tfrlem6 6319 tfrlem7 6320 tfrlem8 6321 tfrlem9 6322 tfrlemibfn 6331 tfrlemiubacc 6333 tfrlemi14d 6336 tfrexlem 6337 |
Copyright terms: Public domain | W3C validator |