ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemssrecs GIF version

Theorem tfrcllemssrecs 6331
Description: Lemma for tfrcl 6343. The union of functions acceptable for tfrcl 6343 is a subset of recs. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcllemssrecs.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemssrecs.x (𝜑 → Ord 𝑋)
Assertion
Ref Expression
tfrcllemssrecs (𝜑 𝐴 ⊆ recs(𝐺))
Distinct variable groups:   𝑓,𝐺,𝑥,𝑦   𝑥,𝑋   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦,𝑓)   𝑆(𝑥,𝑦,𝑓)   𝑋(𝑦,𝑓)

Proof of Theorem tfrcllemssrecs
StepHypRef Expression
1 tfrcllemssrecs.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
2 tfrcllemssrecs.x . . . . . 6 (𝜑 → Ord 𝑋)
3 ordsson 4476 . . . . . 6 (Ord 𝑋𝑋 ⊆ On)
4 ssrexv 3212 . . . . . 6 (𝑋 ⊆ On → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
52, 3, 43syl 17 . . . . 5 (𝜑 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
65ss2abdv 3220 . . . 4 (𝜑 → {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
71, 6eqsstrid 3193 . . 3 (𝜑𝐴 ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
87unissd 3820 . 2 (𝜑 𝐴 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
9 ffn 5347 . . . . . . 7 (𝑓:𝑥𝑆𝑓 Fn 𝑥)
109anim1i 338 . . . . . 6 ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
1110reximi 2567 . . . . 5 (∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
1211ss2abi 3219 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
1312unissi 3819 . . 3 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
14 df-recs 6284 . . 3 recs(𝐺) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
1513, 14sseqtrri 3182 . 2 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ recs(𝐺)
168, 15sstrdi 3159 1 (𝜑 𝐴 ⊆ recs(𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  {cab 2156  wral 2448  wrex 2449  wss 3121   cuni 3796  Ord word 4347  Oncon0 4348  cres 4613   Fn wfn 5193  wf 5194  cfv 5198  recscrecs 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-f 5202  df-recs 6284
This theorem is referenced by:  tfrcllembfn  6336  tfrcllemubacc  6338  tfrcllemres  6341
  Copyright terms: Public domain W3C validator