ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemssrecs GIF version

Theorem tfrcllemssrecs 6257
Description: Lemma for tfrcl 6269. The union of functions acceptable for tfrcl 6269 is a subset of recs. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcllemssrecs.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemssrecs.x (𝜑 → Ord 𝑋)
Assertion
Ref Expression
tfrcllemssrecs (𝜑 𝐴 ⊆ recs(𝐺))
Distinct variable groups:   𝑓,𝐺,𝑥,𝑦   𝑥,𝑋   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦,𝑓)   𝑆(𝑥,𝑦,𝑓)   𝑋(𝑦,𝑓)

Proof of Theorem tfrcllemssrecs
StepHypRef Expression
1 tfrcllemssrecs.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
2 tfrcllemssrecs.x . . . . . 6 (𝜑 → Ord 𝑋)
3 ordsson 4416 . . . . . 6 (Ord 𝑋𝑋 ⊆ On)
4 ssrexv 3167 . . . . . 6 (𝑋 ⊆ On → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
52, 3, 43syl 17 . . . . 5 (𝜑 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
65ss2abdv 3175 . . . 4 (𝜑 → {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
71, 6eqsstrid 3148 . . 3 (𝜑𝐴 ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
87unissd 3768 . 2 (𝜑 𝐴 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
9 ffn 5280 . . . . . . 7 (𝑓:𝑥𝑆𝑓 Fn 𝑥)
109anim1i 338 . . . . . 6 ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
1110reximi 2532 . . . . 5 (∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
1211ss2abi 3174 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
1312unissi 3767 . . 3 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
14 df-recs 6210 . . 3 recs(𝐺) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
1513, 14sseqtrri 3137 . 2 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ recs(𝐺)
168, 15sstrdi 3114 1 (𝜑 𝐴 ⊆ recs(𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  {cab 2126  wral 2417  wrex 2418  wss 3076   cuni 3744  Ord word 4292  Oncon0 4293  cres 4549   Fn wfn 5126  wf 5127  cfv 5131  recscrecs 6209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-in 3082  df-ss 3089  df-uni 3745  df-tr 4035  df-iord 4296  df-on 4298  df-f 5135  df-recs 6210
This theorem is referenced by:  tfrcllembfn  6262  tfrcllemubacc  6264  tfrcllemres  6267
  Copyright terms: Public domain W3C validator