Proof of Theorem tfrcllemssrecs
Step | Hyp | Ref
| Expression |
1 | | tfrcllemssrecs.1 |
. . . 4
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
2 | | tfrcllemssrecs.x |
. . . . . 6
⊢ (𝜑 → Ord 𝑋) |
3 | | ordsson 4476 |
. . . . . 6
⊢ (Ord
𝑋 → 𝑋 ⊆ On) |
4 | | ssrexv 3212 |
. . . . . 6
⊢ (𝑋 ⊆ On → (∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) → ∃𝑥 ∈ On (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))))) |
5 | 2, 3, 4 | 3syl 17 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) → ∃𝑥 ∈ On (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))))) |
6 | 5 | ss2abdv 3220 |
. . . 4
⊢ (𝜑 → {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
7 | 1, 6 | eqsstrid 3193 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
8 | 7 | unissd 3820 |
. 2
⊢ (𝜑 → ∪ 𝐴
⊆ ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
9 | | ffn 5347 |
. . . . . . 7
⊢ (𝑓:𝑥⟶𝑆 → 𝑓 Fn 𝑥) |
10 | 9 | anim1i 338 |
. . . . . 6
⊢ ((𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) → (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))) |
11 | 10 | reximi 2567 |
. . . . 5
⊢
(∃𝑥 ∈ On
(𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))) |
12 | 11 | ss2abi 3219 |
. . . 4
⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
13 | 12 | unissi 3819 |
. . 3
⊢ ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⊆ ∪
{𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
14 | | df-recs 6284 |
. . 3
⊢
recs(𝐺) = ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
15 | 13, 14 | sseqtrri 3182 |
. 2
⊢ ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⊆ recs(𝐺) |
16 | 8, 15 | sstrdi 3159 |
1
⊢ (𝜑 → ∪ 𝐴
⊆ recs(𝐺)) |