ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemssrecs GIF version

Theorem tfrcllemssrecs 6048
Description: Lemma for tfrcl 6060. The union of functions acceptable for tfrcl 6060 is a subset of recs. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcllemssrecs.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemssrecs.x (𝜑 → Ord 𝑋)
Assertion
Ref Expression
tfrcllemssrecs (𝜑 𝐴 ⊆ recs(𝐺))
Distinct variable groups:   𝑓,𝐺,𝑥,𝑦   𝑥,𝑋   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦,𝑓)   𝑆(𝑥,𝑦,𝑓)   𝑋(𝑦,𝑓)

Proof of Theorem tfrcllemssrecs
StepHypRef Expression
1 tfrcllemssrecs.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
2 tfrcllemssrecs.x . . . . . 6 (𝜑 → Ord 𝑋)
3 ordsson 4271 . . . . . 6 (Ord 𝑋𝑋 ⊆ On)
4 ssrexv 3070 . . . . . 6 (𝑋 ⊆ On → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
52, 3, 43syl 17 . . . . 5 (𝜑 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
65ss2abdv 3078 . . . 4 (𝜑 → {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
71, 6syl5eqss 3054 . . 3 (𝜑𝐴 ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
87unissd 3651 . 2 (𝜑 𝐴 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
9 ffn 5113 . . . . . . 7 (𝑓:𝑥𝑆𝑓 Fn 𝑥)
109anim1i 333 . . . . . 6 ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
1110reximi 2464 . . . . 5 (∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
1211ss2abi 3077 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
1312unissi 3650 . . 3 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
14 df-recs 6001 . . 3 recs(𝐺) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
1513, 14sseqtr4i 3043 . 2 {𝑓 ∣ ∃𝑥 ∈ On (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ⊆ recs(𝐺)
168, 15syl6ss 3022 1 (𝜑 𝐴 ⊆ recs(𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  {cab 2069  wral 2353  wrex 2354  wss 2984   cuni 3627  Ord word 4152  Oncon0 4153  cres 4402   Fn wfn 4963  wf 4964  cfv 4968  recscrecs 6000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-in 2990  df-ss 2997  df-uni 3628  df-tr 3902  df-iord 4156  df-on 4158  df-f 4972  df-recs 6001
This theorem is referenced by:  tfrcllembfn  6053  tfrcllemubacc  6055  tfrcllemres  6058
  Copyright terms: Public domain W3C validator