![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfri1d | GIF version |
Description: Principle of Transfinite
Recursion, part 1 of 3. Theorem 7.41(1) of
[TakeutiZaring] p. 47, with an
additional condition.
The condition is that πΊ is defined "everywhere", which is stated here as (πΊβπ₯) β V. Alternately, βπ₯ β Onβπ(π Fn π₯ β π β dom πΊ) would suffice. Given a function πΊ satisfying that condition, we define a class π΄ of all "acceptable" functions. The final function we're interested in is the union πΉ = recs(πΊ) of them. πΉ is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of πΉ. In this first part we show that πΉ is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfri1d.1 | β’ πΉ = recs(πΊ) |
tfri1d.2 | β’ (π β βπ₯(Fun πΊ β§ (πΊβπ₯) β V)) |
Ref | Expression |
---|---|
tfri1d | β’ (π β πΉ Fn On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . . . . 6 β’ {π β£ βπ§ β On (π Fn π§ β§ βπ’ β π§ (πβπ’) = (πΊβ(π βΎ π’)))} = {π β£ βπ§ β On (π Fn π§ β§ βπ’ β π§ (πβπ’) = (πΊβ(π βΎ π’)))} | |
2 | 1 | tfrlem3 6312 | . . . . 5 β’ {π β£ βπ§ β On (π Fn π§ β§ βπ’ β π§ (πβπ’) = (πΊβ(π βΎ π’)))} = {π β£ βπ₯ β On (π Fn π₯ β§ βπ¦ β π₯ (πβπ¦) = (πΊβ(π βΎ π¦)))} |
3 | tfri1d.2 | . . . . 5 β’ (π β βπ₯(Fun πΊ β§ (πΊβπ₯) β V)) | |
4 | 2, 3 | tfrlemi14d 6334 | . . . 4 β’ (π β dom recs(πΊ) = On) |
5 | eqid 2177 | . . . . 5 β’ {π€ β£ βπ¦ β On (π€ Fn π¦ β§ βπ§ β π¦ (π€βπ§) = (πΊβ(π€ βΎ π§)))} = {π€ β£ βπ¦ β On (π€ Fn π¦ β§ βπ§ β π¦ (π€βπ§) = (πΊβ(π€ βΎ π§)))} | |
6 | 5 | tfrlem7 6318 | . . . 4 β’ Fun recs(πΊ) |
7 | 4, 6 | jctil 312 | . . 3 β’ (π β (Fun recs(πΊ) β§ dom recs(πΊ) = On)) |
8 | df-fn 5220 | . . 3 β’ (recs(πΊ) Fn On β (Fun recs(πΊ) β§ dom recs(πΊ) = On)) | |
9 | 7, 8 | sylibr 134 | . 2 β’ (π β recs(πΊ) Fn On) |
10 | tfri1d.1 | . . 3 β’ πΉ = recs(πΊ) | |
11 | 10 | fneq1i 5311 | . 2 β’ (πΉ Fn On β recs(πΊ) Fn On) |
12 | 9, 11 | sylibr 134 | 1 β’ (π β πΉ Fn On) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 βwal 1351 = wceq 1353 β wcel 2148 {cab 2163 βwral 2455 βwrex 2456 Vcvv 2738 Oncon0 4364 dom cdm 4627 βΎ cres 4629 Fun wfun 5211 Fn wfn 5212 βcfv 5217 recscrecs 6305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-iord 4367 df-on 4369 df-suc 4372 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-recs 6306 |
This theorem is referenced by: tfri2d 6337 tfri1 6366 rdgifnon 6380 rdgifnon2 6381 frecfnom 6402 |
Copyright terms: Public domain | W3C validator |