| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfri1d | GIF version | ||
| Description: Principle of Transfinite
Recursion, part 1 of 3. Theorem 7.41(1) of
[TakeutiZaring] p. 47, with an
additional condition.
The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺‘𝑥) ∈ V. Alternately, ∀𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥 → 𝑓 ∈ dom 𝐺) would suffice. Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| tfri1d.1 | ⊢ 𝐹 = recs(𝐺) |
| tfri1d.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) |
| Ref | Expression |
|---|---|
| tfri1d | ⊢ (𝜑 → 𝐹 Fn On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . . . . 6 ⊢ {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))} | |
| 2 | 1 | tfrlem3 6447 | . . . . 5 ⊢ {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| 3 | tfri1d.2 | . . . . 5 ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) | |
| 4 | 2, 3 | tfrlemi14d 6469 | . . . 4 ⊢ (𝜑 → dom recs(𝐺) = On) |
| 5 | eqid 2229 | . . . . 5 ⊢ {𝑤 ∣ ∃𝑦 ∈ On (𝑤 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑤‘𝑧) = (𝐺‘(𝑤 ↾ 𝑧)))} = {𝑤 ∣ ∃𝑦 ∈ On (𝑤 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑤‘𝑧) = (𝐺‘(𝑤 ↾ 𝑧)))} | |
| 6 | 5 | tfrlem7 6453 | . . . 4 ⊢ Fun recs(𝐺) |
| 7 | 4, 6 | jctil 312 | . . 3 ⊢ (𝜑 → (Fun recs(𝐺) ∧ dom recs(𝐺) = On)) |
| 8 | df-fn 5317 | . . 3 ⊢ (recs(𝐺) Fn On ↔ (Fun recs(𝐺) ∧ dom recs(𝐺) = On)) | |
| 9 | 7, 8 | sylibr 134 | . 2 ⊢ (𝜑 → recs(𝐺) Fn On) |
| 10 | tfri1d.1 | . . 3 ⊢ 𝐹 = recs(𝐺) | |
| 11 | 10 | fneq1i 5411 | . 2 ⊢ (𝐹 Fn On ↔ recs(𝐺) Fn On) |
| 12 | 9, 11 | sylibr 134 | 1 ⊢ (𝜑 → 𝐹 Fn On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1393 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∃wrex 2509 Vcvv 2799 Oncon0 4451 dom cdm 4716 ↾ cres 4718 Fun wfun 5308 Fn wfn 5309 ‘cfv 5314 recscrecs 6440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-recs 6441 |
| This theorem is referenced by: tfri2d 6472 tfri1 6501 rdgifnon 6515 rdgifnon2 6516 frecfnom 6537 |
| Copyright terms: Public domain | W3C validator |