| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfri1d | GIF version | ||
| Description: Principle of Transfinite
Recursion, part 1 of 3. Theorem 7.41(1) of
[TakeutiZaring] p. 47, with an
additional condition.
The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺‘𝑥) ∈ V. Alternately, ∀𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥 → 𝑓 ∈ dom 𝐺) would suffice. Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| tfri1d.1 | ⊢ 𝐹 = recs(𝐺) |
| tfri1d.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) |
| Ref | Expression |
|---|---|
| tfri1d | ⊢ (𝜑 → 𝐹 Fn On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . . . . 6 ⊢ {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))} | |
| 2 | 1 | tfrlem3 6407 | . . . . 5 ⊢ {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| 3 | tfri1d.2 | . . . . 5 ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) | |
| 4 | 2, 3 | tfrlemi14d 6429 | . . . 4 ⊢ (𝜑 → dom recs(𝐺) = On) |
| 5 | eqid 2206 | . . . . 5 ⊢ {𝑤 ∣ ∃𝑦 ∈ On (𝑤 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑤‘𝑧) = (𝐺‘(𝑤 ↾ 𝑧)))} = {𝑤 ∣ ∃𝑦 ∈ On (𝑤 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑤‘𝑧) = (𝐺‘(𝑤 ↾ 𝑧)))} | |
| 6 | 5 | tfrlem7 6413 | . . . 4 ⊢ Fun recs(𝐺) |
| 7 | 4, 6 | jctil 312 | . . 3 ⊢ (𝜑 → (Fun recs(𝐺) ∧ dom recs(𝐺) = On)) |
| 8 | df-fn 5280 | . . 3 ⊢ (recs(𝐺) Fn On ↔ (Fun recs(𝐺) ∧ dom recs(𝐺) = On)) | |
| 9 | 7, 8 | sylibr 134 | . 2 ⊢ (𝜑 → recs(𝐺) Fn On) |
| 10 | tfri1d.1 | . . 3 ⊢ 𝐹 = recs(𝐺) | |
| 11 | 10 | fneq1i 5374 | . 2 ⊢ (𝐹 Fn On ↔ recs(𝐺) Fn On) |
| 12 | 9, 11 | sylibr 134 | 1 ⊢ (𝜑 → 𝐹 Fn On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 = wceq 1373 ∈ wcel 2177 {cab 2192 ∀wral 2485 ∃wrex 2486 Vcvv 2773 Oncon0 4415 dom cdm 4680 ↾ cres 4682 Fun wfun 5271 Fn wfn 5272 ‘cfv 5277 recscrecs 6400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-recs 6401 |
| This theorem is referenced by: tfri2d 6432 tfri1 6461 rdgifnon 6475 rdgifnon2 6476 frecfnom 6497 |
| Copyright terms: Public domain | W3C validator |