ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1d GIF version

Theorem tfri1d 6303
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47, with an additional condition.

The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺𝑥) ∈ V. Alternately, 𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥𝑓 ∈ dom 𝐺) would suffice.

Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfri1d.1 𝐹 = recs(𝐺)
tfri1d.2 (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))
Assertion
Ref Expression
tfri1d (𝜑𝐹 Fn On)
Distinct variable group:   𝑥,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem tfri1d
Dummy variables 𝑓 𝑔 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . . . . 6 {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))}
21tfrlem3 6279 . . . . 5 {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
3 tfri1d.2 . . . . 5 (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))
42, 3tfrlemi14d 6301 . . . 4 (𝜑 → dom recs(𝐺) = On)
5 eqid 2165 . . . . 5 {𝑤 ∣ ∃𝑦 ∈ On (𝑤 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑤𝑧) = (𝐺‘(𝑤𝑧)))} = {𝑤 ∣ ∃𝑦 ∈ On (𝑤 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑤𝑧) = (𝐺‘(𝑤𝑧)))}
65tfrlem7 6285 . . . 4 Fun recs(𝐺)
74, 6jctil 310 . . 3 (𝜑 → (Fun recs(𝐺) ∧ dom recs(𝐺) = On))
8 df-fn 5191 . . 3 (recs(𝐺) Fn On ↔ (Fun recs(𝐺) ∧ dom recs(𝐺) = On))
97, 8sylibr 133 . 2 (𝜑 → recs(𝐺) Fn On)
10 tfri1d.1 . . 3 𝐹 = recs(𝐺)
1110fneq1i 5282 . 2 (𝐹 Fn On ↔ recs(𝐺) Fn On)
129, 11sylibr 133 1 (𝜑𝐹 Fn On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341   = wceq 1343  wcel 2136  {cab 2151  wral 2444  wrex 2445  Vcvv 2726  Oncon0 4341  dom cdm 4604  cres 4606  Fun wfun 5182   Fn wfn 5183  cfv 5188  recscrecs 6272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-recs 6273
This theorem is referenced by:  tfri2d  6304  tfri1  6333  rdgifnon  6347  rdgifnon2  6348  frecfnom  6369
  Copyright terms: Public domain W3C validator