ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1d GIF version

Theorem tfri1d 6336
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47, with an additional condition.

The condition is that 𝐺 is defined "everywhere", which is stated here as (πΊβ€˜π‘₯) ∈ V. Alternately, βˆ€π‘₯ ∈ Onβˆ€π‘“(𝑓 Fn π‘₯ β†’ 𝑓 ∈ dom 𝐺) would suffice.

Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfri1d.1 𝐹 = recs(𝐺)
tfri1d.2 (πœ‘ β†’ βˆ€π‘₯(Fun 𝐺 ∧ (πΊβ€˜π‘₯) ∈ V))
Assertion
Ref Expression
tfri1d (πœ‘ β†’ 𝐹 Fn On)
Distinct variable group:   π‘₯,𝐺
Allowed substitution hints:   πœ‘(π‘₯)   𝐹(π‘₯)

Proof of Theorem tfri1d
Dummy variables 𝑓 𝑔 𝑒 𝑀 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . . . 6 {𝑔 ∣ βˆƒπ‘§ ∈ On (𝑔 Fn 𝑧 ∧ βˆ€π‘’ ∈ 𝑧 (π‘”β€˜π‘’) = (πΊβ€˜(𝑔 β†Ύ 𝑒)))} = {𝑔 ∣ βˆƒπ‘§ ∈ On (𝑔 Fn 𝑧 ∧ βˆ€π‘’ ∈ 𝑧 (π‘”β€˜π‘’) = (πΊβ€˜(𝑔 β†Ύ 𝑒)))}
21tfrlem3 6312 . . . . 5 {𝑔 ∣ βˆƒπ‘§ ∈ On (𝑔 Fn 𝑧 ∧ βˆ€π‘’ ∈ 𝑧 (π‘”β€˜π‘’) = (πΊβ€˜(𝑔 β†Ύ 𝑒)))} = {𝑓 ∣ βˆƒπ‘₯ ∈ On (𝑓 Fn π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (π‘“β€˜π‘¦) = (πΊβ€˜(𝑓 β†Ύ 𝑦)))}
3 tfri1d.2 . . . . 5 (πœ‘ β†’ βˆ€π‘₯(Fun 𝐺 ∧ (πΊβ€˜π‘₯) ∈ V))
42, 3tfrlemi14d 6334 . . . 4 (πœ‘ β†’ dom recs(𝐺) = On)
5 eqid 2177 . . . . 5 {𝑀 ∣ βˆƒπ‘¦ ∈ On (𝑀 Fn 𝑦 ∧ βˆ€π‘§ ∈ 𝑦 (π‘€β€˜π‘§) = (πΊβ€˜(𝑀 β†Ύ 𝑧)))} = {𝑀 ∣ βˆƒπ‘¦ ∈ On (𝑀 Fn 𝑦 ∧ βˆ€π‘§ ∈ 𝑦 (π‘€β€˜π‘§) = (πΊβ€˜(𝑀 β†Ύ 𝑧)))}
65tfrlem7 6318 . . . 4 Fun recs(𝐺)
74, 6jctil 312 . . 3 (πœ‘ β†’ (Fun recs(𝐺) ∧ dom recs(𝐺) = On))
8 df-fn 5220 . . 3 (recs(𝐺) Fn On ↔ (Fun recs(𝐺) ∧ dom recs(𝐺) = On))
97, 8sylibr 134 . 2 (πœ‘ β†’ recs(𝐺) Fn On)
10 tfri1d.1 . . 3 𝐹 = recs(𝐺)
1110fneq1i 5311 . 2 (𝐹 Fn On ↔ recs(𝐺) Fn On)
129, 11sylibr 134 1 (πœ‘ β†’ 𝐹 Fn On)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104  βˆ€wal 1351   = wceq 1353   ∈ wcel 2148  {cab 2163  βˆ€wral 2455  βˆƒwrex 2456  Vcvv 2738  Oncon0 4364  dom cdm 4627   β†Ύ cres 4629  Fun wfun 5211   Fn wfn 5212  β€˜cfv 5217  recscrecs 6305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-recs 6306
This theorem is referenced by:  tfri2d  6337  tfri1  6366  rdgifnon  6380  rdgifnon2  6381  frecfnom  6402
  Copyright terms: Public domain W3C validator