![]() |
Intuitionistic Logic Explorer Theorem List (p. 64 of 156) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | tposeqd 6301 | Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) | ||
Theorem | tposssxp 6302 | The transposition is a subset of a cross product. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | ||
Theorem | reltpos 6303 | The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ Rel tpos 𝐹 | ||
Theorem | brtpos2 6304 | Value of the transposition at a pair 〈𝐴, 𝐵〉. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) | ||
Theorem | brtpos0 6305 | The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) | ||
Theorem | reldmtpos 6306 | Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | ||
Theorem | brtposg 6307 | The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | ||
Theorem | ottposg 6308 | The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹)) | ||
Theorem | dmtpos 6309 | The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) | ||
Theorem | rntpos 6310 | The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹) | ||
Theorem | tposexg 6311 | The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) | ||
Theorem | ovtposg 6312 | The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from ( 1 ... m ) × ( 1 ... n ) to the reals or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴)) | ||
Theorem | tposfun 6313 | The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Fun 𝐹 → Fun tpos 𝐹) | ||
Theorem | dftpos2 6314* | Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) | ||
Theorem | dftpos3 6315* | Alternate definition of tpos when 𝐹 has relational domain. Compare df-cnv 4667. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom 𝐹 → tpos 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 〈𝑦, 𝑥〉𝐹𝑧}) | ||
Theorem | dftpos4 6316* | Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | ||
Theorem | tpostpos 6317 | Value of the double transposition for a general class 𝐹. (Contributed by Mario Carneiro, 16-Sep-2015.) |
⊢ tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V)) | ||
Theorem | tpostpos2 6318 | Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.) |
⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹) | ||
Theorem | tposfn2 6319 | The domain of a transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) | ||
Theorem | tposfo2 6320 | Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) | ||
Theorem | tposf2 6321 | The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) | ||
Theorem | tposf12 6322 | Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹:𝐴–1-1→𝐵 → tpos 𝐹:◡𝐴–1-1→𝐵)) | ||
Theorem | tposf1o2 6323 | Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹:𝐴–1-1-onto→𝐵 → tpos 𝐹:◡𝐴–1-1-onto→𝐵)) | ||
Theorem | tposfo 6324 | The domain and codomain/range of a transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) | ||
Theorem | tposf 6325 | The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) | ||
Theorem | tposfn 6326 | Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝐹 Fn (𝐴 × 𝐵) → tpos 𝐹 Fn (𝐵 × 𝐴)) | ||
Theorem | tpos0 6327 | Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
⊢ tpos ∅ = ∅ | ||
Theorem | tposco 6328 | Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) | ||
Theorem | tpossym 6329* | Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))) | ||
Theorem | tposeqi 6330 | Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 = 𝐺 ⇒ ⊢ tpos 𝐹 = tpos 𝐺 | ||
Theorem | tposex 6331 | A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 ∈ V ⇒ ⊢ tpos 𝐹 ∈ V | ||
Theorem | nftpos 6332 | Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥tpos 𝐹 | ||
Theorem | tposoprab 6333* | Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⇒ ⊢ tpos 𝐹 = {〈〈𝑦, 𝑥〉, 𝑧〉 ∣ 𝜑} | ||
Theorem | tposmpo 6334* | Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ tpos 𝐹 = (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) | ||
Theorem | pwuninel2 6335 | The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | ||
Theorem | 2pwuninelg 6336 | The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.) |
⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) | ||
Theorem | iunon 6337* | The indexed union of a set of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ On) | ||
Syntax | wsmo 6338 | Introduce the strictly monotone ordinal function. A strictly monotone function is one that is constantly increasing across the ordinals. |
wff Smo 𝐴 | ||
Definition | df-smo 6339* | Definition of a strictly monotone ordinal function. Definition 7.46 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 15-Nov-2011.) |
⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) | ||
Theorem | dfsmo2 6340* | Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.) |
⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | ||
Theorem | issmo 6341* | Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) |
⊢ 𝐴:𝐵⟶On & ⊢ Ord 𝐵 & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) & ⊢ dom 𝐴 = 𝐵 ⇒ ⊢ Smo 𝐴 | ||
Theorem | issmo2 6342* | Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.) |
⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) | ||
Theorem | smoeq 6343 | Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.) |
⊢ (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵)) | ||
Theorem | smodm 6344 | The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.) |
⊢ (Smo 𝐴 → Ord dom 𝐴) | ||
Theorem | smores 6345 | A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
⊢ ((Smo 𝐴 ∧ 𝐵 ∈ dom 𝐴) → Smo (𝐴 ↾ 𝐵)) | ||
Theorem | smores3 6346 | A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.) |
⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) | ||
Theorem | smores2 6347 | A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
⊢ ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹 ↾ 𝐴)) | ||
Theorem | smodm2 6348 | The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.) |
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) | ||
Theorem | smofvon2dm 6349 | The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.) |
⊢ ((Smo 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹‘𝐵) ∈ On) | ||
Theorem | iordsmo 6350 | The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
⊢ Ord 𝐴 ⇒ ⊢ Smo ( I ↾ 𝐴) | ||
Theorem | smo0 6351 | The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.) |
⊢ Smo ∅ | ||
Theorem | smofvon 6352 | If 𝐵 is a strictly monotone ordinal function, and 𝐴 is in the domain of 𝐵, then the value of the function at 𝐴 is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.) |
⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐵‘𝐴) ∈ On) | ||
Theorem | smoel 6353 | If 𝑥 is less than 𝑦 then a strictly monotone function's value will be strictly less at 𝑥 than at 𝑦. (Contributed by Andrew Salmon, 22-Nov-2011.) |
⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐵‘𝐶) ∈ (𝐵‘𝐴)) | ||
Theorem | smoiun 6354* | The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.) |
⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) | ||
Theorem | smoiso 6355 | If 𝐹 is an isomorphism from an ordinal 𝐴 onto 𝐵, which is a subset of the ordinals, then 𝐹 is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.) |
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → Smo 𝐹) | ||
Theorem | smoel2 6356 | A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.) |
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) | ||
Syntax | crecs 6357 | Notation for a function defined by strong transfinite recursion. |
class recs(𝐹) | ||
Definition | df-recs 6358* |
Define a function recs(𝐹) on On, the
class of ordinal
numbers, by transfinite recursion given a rule 𝐹 which sets the next
value given all values so far. See df-irdg 6423 for more details on why
this definition is desirable. Unlike df-irdg 6423 which restricts the
update rule to use only the previous value, this version allows the
update rule to use all previous values, which is why it is
described
as "strong", although it is actually more primitive. See tfri1d 6388 and
tfri2d 6389 for the primary contract of this definition.
(Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | ||
Theorem | recseq 6359 | Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) | ||
Theorem | nfrecs 6360 | Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥recs(𝐹) | ||
Theorem | tfrlem1 6361* | A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.) |
⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) & ⊢ (𝜑 → (Fun 𝐺 ∧ 𝐴 ⊆ dom 𝐺)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥))) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) | ||
Theorem | tfrlem3ag 6362* | Lemma for transfinite recursion. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by Jim Kingdon, 5-Jul-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝐺 ∈ V → (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤))))) | ||
Theorem | tfrlem3a 6363* | Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐺 ∈ V ⇒ ⊢ (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) | ||
Theorem | tfrlem3 6364* | Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))} | ||
Theorem | tfrlem3-2d 6365* | Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.) |
⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) | ||
Theorem | tfrlem4 6366* | Lemma for transfinite recursion. 𝐴 is the class of all "acceptable" functions, and 𝐹 is their union. First we show that an acceptable function is in fact a function. (Contributed by NM, 9-Apr-1995.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝑔 ∈ 𝐴 → Fun 𝑔) | ||
Theorem | tfrlem5 6367* | Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | ||
Theorem | recsfval 6368* | Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ recs(𝐹) = ∪ 𝐴 | ||
Theorem | tfrlem6 6369* | Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ Rel recs(𝐹) | ||
Theorem | tfrlem7 6370* | Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ Fun recs(𝐹) | ||
Theorem | tfrlem8 6371* | Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ Ord dom recs(𝐹) | ||
Theorem | tfrlem9 6372* | Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))) | ||
Theorem | tfrfun 6373 | Transfinite recursion produces a function. (Contributed by Jim Kingdon, 20-Aug-2021.) |
⊢ Fun recs(𝐹) | ||
Theorem | tfr2a 6374 | A weak version of transfinite recursion. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) ⇒ ⊢ (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) | ||
Theorem | tfr0dm 6375 | Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) ⇒ ⊢ ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹) | ||
Theorem | tfr0 6376 | Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.) |
⊢ 𝐹 = recs(𝐺) ⇒ ⊢ ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘∅)) | ||
Theorem | tfrlemisucfn 6377* | We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6385. (Contributed by Jim Kingdon, 2-Jul-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ (𝜑 → 𝑧 ∈ On) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) | ||
Theorem | tfrlemisucaccv 6378* | We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 6385. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ (𝜑 → 𝑧 ∈ On) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ 𝐴) | ||
Theorem | tfrlemibacc 6379* | Each element of 𝐵 is an acceptable function. Lemma for tfrlemi1 6385. (Contributed by Jim Kingdon, 14-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | ||
Theorem | tfrlemibxssdm 6380* | The union of 𝐵 is defined on all ordinals. Lemma for tfrlemi1 6385. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝑥 ⊆ dom ∪ 𝐵) | ||
Theorem | tfrlemibfn 6381* | The union of 𝐵 is a function defined on 𝑥. Lemma for tfrlemi1 6385. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∪ 𝐵 Fn 𝑥) | ||
Theorem | tfrlemibex 6382* | The set 𝐵 exists. Lemma for tfrlemi1 6385. (Contributed by Jim Kingdon, 17-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
Theorem | tfrlemiubacc 6383* | The union of 𝐵 satisfies the recursion rule (lemma for tfrlemi1 6385). (Contributed by Jim Kingdon, 22-Apr-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢))) | ||
Theorem | tfrlemiex 6384* | Lemma for tfrlemi1 6385. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)))) | ||
Theorem | tfrlemi1 6385* |
We can define an acceptable function on any ordinal.
As with many of the transfinite recursion theorems, we have a hypothesis that states that 𝐹 is a function and that it is defined for all ordinals. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ On) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) | ||
Theorem | tfrlemi14d 6386* | The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ (𝜑 → dom recs(𝐹) = On) | ||
Theorem | tfrexlem 6387* | The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑉) → (recs(𝐹)‘𝐶) ∈ V) | ||
Theorem | tfri1d 6388* |
Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of
[TakeutiZaring] p. 47, with an
additional condition.
The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺‘𝑥) ∈ V. Alternately, ∀𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥 → 𝑓 ∈ dom 𝐺) would suffice. Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) ⇒ ⊢ (𝜑 → 𝐹 Fn On) | ||
Theorem | tfri2d 6389* | Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6418). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ On) → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) | ||
Theorem | tfr1onlem3ag 6390* | Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3ag 6362 but for tfr1on 6403 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝐻 ∈ 𝑉 → (𝐻 ∈ 𝐴 ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) | ||
Theorem | tfr1onlem3 6391* | Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3 6364 but for tfr1on 6403 related lemmas). (Contributed by Jim Kingdon, 14-Mar-2022.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ 𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} | ||
Theorem | tfr1onlemssrecs 6392* | Lemma for tfr1on 6403. The union of functions acceptable for tfr1on 6403 is a subset of recs. (Contributed by Jim Kingdon, 15-Mar-2022.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → Ord 𝑋) ⇒ ⊢ (𝜑 → ∪ 𝐴 ⊆ recs(𝐺)) | ||
Theorem | tfr1onlemsucfn 6393* | We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6403. (Contributed by Jim Kingdon, 12-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → 𝑧 ∈ 𝑋) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) | ||
Theorem | tfr1onlemsucaccv 6394* | Lemma for tfr1on 6403. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 12-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝑧 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴) | ||
Theorem | tfr1onlembacc 6395* | Lemma for tfr1on 6403. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 14-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | ||
Theorem | tfr1onlembxssdm 6396* | Lemma for tfr1on 6403. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 14-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐷 ⊆ dom ∪ 𝐵) | ||
Theorem | tfr1onlembfn 6397* | Lemma for tfr1on 6403. The union of 𝐵 is a function defined on 𝑥. (Contributed by Jim Kingdon, 15-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∪ 𝐵 Fn 𝐷) | ||
Theorem | tfr1onlembex 6398* | Lemma for tfr1on 6403. The set 𝐵 exists. (Contributed by Jim Kingdon, 14-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
Theorem | tfr1onlemubacc 6399* | Lemma for tfr1on 6403. The union of 𝐵 satisfies the recursion rule. (Contributed by Jim Kingdon, 15-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) | ||
Theorem | tfr1onlemex 6400* | Lemma for tfr1on 6403. (Contributed by Jim Kingdon, 16-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |