HomeHome Intuitionistic Logic Explorer
Theorem List (p. 64 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6301-6400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremreleldm2 6301* Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.)
(Rel 𝐴 → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐵))
 
Theoremreldm 6302* An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
(Rel 𝐴 → dom 𝐴 = ran (𝑥𝐴 ↦ (1st𝑥)))
 
Theoremsbcopeq1a 6303 Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 3018 that avoids the existential quantifiers of copsexg 4309). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝐴 = ⟨𝑥, 𝑦⟩ → ([(1st𝐴) / 𝑥][(2nd𝐴) / 𝑦]𝜑𝜑))
 
Theoremcsbopeq1a 6304 Equality theorem for substitution of a class 𝐴 for an ordered pair 𝑥, 𝑦 in 𝐵 (analog of csbeq1a 3113). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵 = 𝐵)
 
Theoremdfopab2 6305* A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∈ (V × V) ∣ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑}
 
Theoremdfoprab3s 6306* A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑)}
 
Theoremdfoprab3 6307* Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.)
(𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))       {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremdfoprab4 6308* Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))       {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
 
Theoremdfoprab4f 6309* Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝑥𝜑    &   𝑦𝜑    &   (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))       {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
 
Theoremdfxp3 6310* Define the cross product of three classes. Compare df-xp 4702. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.)
((𝐴 × 𝐵) × 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥𝐴𝑦𝐵𝑧𝐶)}
 
Theoremelopabi 6311* A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
(𝑥 = (1st𝐴) → (𝜑𝜓))    &   (𝑦 = (2nd𝐴) → (𝜓𝜒))       (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒)
 
Theoremeloprabi 6312* A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑥 = (1st ‘(1st𝐴)) → (𝜑𝜓))    &   (𝑦 = (2nd ‘(1st𝐴)) → (𝜓𝜒))    &   (𝑧 = (2nd𝐴) → (𝜒𝜃))       (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → 𝜃)
 
Theoremmpomptsx 6313* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.)
(𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
 
Theoremmpompts 6314* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.)
(𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
 
Theoremdmmpossx 6315* The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
 
Theoremfmpox 6316* Functionality, domain and codomain of a class given by the maps-to notation, where 𝐵(𝑥) is not constant but depends on 𝑥. (Contributed by NM, 29-Dec-2014.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷)
 
Theoremfmpo 6317* Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹:(𝐴 × 𝐵)⟶𝐷)
 
Theoremfnmpo 6318* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
 
Theoremfnmpoi 6319* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐶 ∈ V       𝐹 Fn (𝐴 × 𝐵)
 
Theoremdmmpo 6320* Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐶 ∈ V       dom 𝐹 = (𝐴 × 𝐵)
 
Theoremmpofvex 6321* Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → (𝑅𝐹𝑆) ∈ V)
 
Theoremmpofvexi 6322* Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐶 ∈ V    &   𝑅 ∈ V    &   𝑆 ∈ V       (𝑅𝐹𝑆) ∈ V
 
Theoremovmpoelrn 6323* An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020.)
𝑂 = (𝑥𝐴, 𝑦𝐵𝐶)       ((∀𝑥𝐴𝑦𝐵 𝐶𝑀𝑋𝐴𝑌𝐵) → (𝑋𝑂𝑌) ∈ 𝑀)
 
Theoremdmmpoga 6324* Domain of an operation given by the maps-to notation, closed form of dmmpo 6320. (Contributed by Alexander van der Vekens, 10-Feb-2019.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))
 
Theoremdmmpog 6325* Domain of an operation given by the maps-to notation, closed form of dmmpo 6320. Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017.) (Proof shortened by AV, 10-Feb-2019.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))
 
Theoremmpoexxg 6326* Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝐹 ∈ V)
 
Theoremmpoexg 6327* Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((𝐴𝑅𝐵𝑆) → 𝐹 ∈ V)
 
Theoremmpoexga 6328* If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.)
((𝐴𝑉𝐵𝑊) → (𝑥𝐴, 𝑦𝐵𝐶) ∈ V)
 
Theoremmpoexw 6329* Weak version of mpoex 6330 that holds without ax-coll 4178. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐷 ∈ V    &   𝑥𝐴𝑦𝐵 𝐶𝐷       (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
 
Theoremmpoex 6330* If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
 
Theoremfnmpoovd 6331* A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.)
(𝜑𝑀 Fn (𝐴 × 𝐵))    &   ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐷 = 𝐶)    &   ((𝜑𝑖𝐴𝑗𝐵) → 𝐷𝑈)    &   ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)       (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
 
Theoremfmpoco 6332* Composition of two functions. Variation of fmptco 5774 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.)
((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑅𝐶)    &   (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝑅))    &   (𝜑𝐺 = (𝑧𝐶𝑆))    &   (𝑧 = 𝑅𝑆 = 𝑇)       (𝜑 → (𝐺𝐹) = (𝑥𝐴, 𝑦𝐵𝑇))
 
Theoremoprabco 6333* Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
((𝑥𝐴𝑦𝐵) → 𝐶𝐷)    &   𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐻𝐶))       (𝐻 Fn 𝐷𝐺 = (𝐻𝐹))
 
Theoremoprab2co 6334* Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.)
((𝑥𝐴𝑦𝐵) → 𝐶𝑅)    &   ((𝑥𝐴𝑦𝐵) → 𝐷𝑆)    &   𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨𝐶, 𝐷⟩)    &   𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷))       (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
 
Theoremdf1st2 6335* An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (1st ↾ (V × V))
 
Theoremdf2nd2 6336* An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V))
 
Theorem1stconst 6337 The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
(𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)
 
Theorem2ndconst 6338 The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
(𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)
 
Theoremdfmpo 6339* Alternate definition for the maps-to notation df-mpo 5979 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐶 ∈ V       (𝑥𝐴, 𝑦𝐵𝐶) = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
 
Theoremcnvf1olem 6340 Lemma for cnvf1o 6341. (Contributed by Mario Carneiro, 27-Apr-2014.)
((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (𝐶𝐴𝐵 = {𝐶}))
 
Theoremcnvf1o 6341* Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
(Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
 
Theoremf2ndf 6342 The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
(𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)
 
Theoremfo2ndf 6343 The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
(𝐹:𝐴𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)
 
Theoremf1o2ndf1 6344 The 2nd (second component of an ordered pair) function restricted to a one-to-one function 𝐹 is a one-to-one function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
(𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹1-1-onto→ran 𝐹)
 
Theoremalgrflem 6345 Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐵 ∈ V    &   𝐶 ∈ V       (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)
 
Theoremalgrflemg 6346 Lemma for algrf 12533 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.)
((𝐵𝑉𝐶𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵))
 
Theoremxporderlem 6347* Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}       (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ (((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
 
Theorempoxp 6348* A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}       ((𝑅 Po 𝐴𝑆 Po 𝐵) → 𝑇 Po (𝐴 × 𝐵))
 
Theoremspc2ed 6349* Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.)
𝑥𝜒    &   𝑦𝜒    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))       ((𝜑 ∧ (𝐴𝑉𝐵𝑊)) → (𝜒 → ∃𝑥𝑦𝜓))
 
Theoremcnvoprab 6350* The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.)
𝑥𝜓    &   𝑦𝜓    &   (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))    &   (𝜓𝑎 ∈ (V × V))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
 
Theoremf1od2 6351* Describe an implicit one-to-one onto function of two variables. (Contributed by Thierry Arnoux, 17-Aug-2017.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑊)    &   ((𝜑𝑧𝐷) → (𝐼𝑋𝐽𝑌))    &   (𝜑 → (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ (𝑧𝐷 ∧ (𝑥 = 𝐼𝑦 = 𝐽))))       (𝜑𝐹:(𝐴 × 𝐵)–1-1-onto𝐷)
 
Theoremdisjxp1 6352* The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑Disj 𝑥𝐴 𝐵)       (𝜑Disj 𝑥𝐴 (𝐵 × 𝐶))
 
Theoremdisjsnxp 6353* The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Disj 𝑗𝐴 ({𝑗} × 𝐵)
 
2.6.16  Special maps-to operations

The following theorems are about maps-to operations (see df-mpo 5979) where the domain of the second argument depends on the domain of the first argument, especially when the first argument is a pair and the base set of the second argument is the first component of the first argument, in short "x-maps-to operations". For labels, the abbreviations "mpox" are used (since "x" usually denotes the first argument). This is in line with the currently used conventions for such cases (see cbvmpox 6053, ovmpox 6104 and fmpox 6316). If the first argument is an ordered pair, as in the following, the abbreviation is extended to "mpoxop", and the maps-to operations are called "x-op maps-to operations" for short.

 
Theoremopeliunxp2f 6354* Membership in a union of Cartesian products, using bound-variable hypothesis for 𝐸 instead of distinct variable conditions as in opeliunxp2 4839. (Contributed by AV, 25-Oct-2020.)
𝑥𝐸    &   (𝑥 = 𝐶𝐵 = 𝐸)       (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
 
Theoremmpoxopn0yelv 6355* If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)       ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))
 
Theoremmpoxopoveq 6356* Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})       (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
 
Theoremmpoxopovel 6357* Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.)
𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})       ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ (𝐾𝑉𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
 
Theoremrbropapd 6358* Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
(𝜑𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)})    &   ((𝑓 = 𝐹𝑝 = 𝑃) → (𝜓𝜒))       (𝜑 → ((𝐹𝑋𝑃𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒))))
 
Theoremrbropap 6359* Properties of a pair in a restricted binary relation 𝑀 expressed as an ordered-pair class abstraction: 𝑀 is the binary relation 𝑊 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.)
(𝜑𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)})    &   ((𝑓 = 𝐹𝑝 = 𝑃) → (𝜓𝜒))       ((𝜑𝐹𝑋𝑃𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒)))
 
2.6.17  Function transposition
 
Syntaxctpos 6360 The transposition of a function.
class tpos 𝐹
 
Definitiondf-tpos 6361* Define the transposition of a function, which is a function 𝐺 = tpos 𝐹 satisfying 𝐺(𝑥, 𝑦) = 𝐹(𝑦, 𝑥). (Contributed by Mario Carneiro, 10-Sep-2015.)
tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
 
Theoremtposss 6362 Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
 
Theoremtposeq 6363 Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)
 
Theoremtposeqd 6364 Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐹 = 𝐺)       (𝜑 → tpos 𝐹 = tpos 𝐺)
 
Theoremtposssxp 6365 The transposition is a subset of a cross product. (Contributed by Mario Carneiro, 12-Jan-2017.)
tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
 
Theoremreltpos 6366 The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Rel tpos 𝐹
 
Theorembrtpos2 6367 Value of the transposition at a pair 𝐴, 𝐵. (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐵𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
 
Theorembrtpos0 6368 The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐴𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴))
 
Theoremreldmtpos 6369 Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)
 
Theorembrtposg 6370 The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
 
Theoremottposg 6371 The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨𝐵, 𝐴, 𝐶⟩ ∈ 𝐹))
 
Theoremdmtpos 6372 The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
 
Theoremrntpos 6373 The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)
 
Theoremtposexg 6374 The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐹𝑉 → tpos 𝐹 ∈ V)
 
Theoremovtposg 6375 The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from ( 1 ... m ) × ( 1 ... n ) to the reals or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.)
((𝐴𝑉𝐵𝑊) → (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴))
 
Theoremtposfun 6376 The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Fun 𝐹 → Fun tpos 𝐹)
 
Theoremdftpos2 6377* Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
 
Theoremdftpos3 6378* Alternate definition of tpos when 𝐹 has relational domain. Compare df-cnv 4704. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom 𝐹 → tpos 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧})
 
Theoremdftpos4 6379* Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.)
tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
 
Theoremtpostpos 6380 Value of the double transposition for a general class 𝐹. (Contributed by Mario Carneiro, 16-Sep-2015.)
tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V))
 
Theoremtpostpos2 6381 Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.)
((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹)
 
Theoremtposfn2 6382 The domain of a transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn 𝐴))
 
Theoremtposfo2 6383 Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 → (𝐹:𝐴onto𝐵 → tpos 𝐹:𝐴onto𝐵))
 
Theoremtposf2 6384 The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 → (𝐹:𝐴𝐵 → tpos 𝐹:𝐴𝐵))
 
Theoremtposf12 6385 Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))
 
Theoremtposf1o2 6386 Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 → (𝐹:𝐴1-1-onto𝐵 → tpos 𝐹:𝐴1-1-onto𝐵))
 
Theoremtposfo 6387 The domain and codomain/range of a transposition. (Contributed by NM, 10-Sep-2015.)
(𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto𝐶)
 
Theoremtposf 6388 The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.)
(𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶)
 
Theoremtposfn 6389 Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝐹 Fn (𝐴 × 𝐵) → tpos 𝐹 Fn (𝐵 × 𝐴))
 
Theoremtpos0 6390 Transposition of the empty set. (Contributed by NM, 10-Sep-2015.)
tpos ∅ = ∅
 
Theoremtposco 6391 Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.)
tpos (𝐹𝐺) = (𝐹 ∘ tpos 𝐺)
 
Theoremtpossym 6392* Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)))
 
Theoremtposeqi 6393 Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 = 𝐺       tpos 𝐹 = tpos 𝐺
 
Theoremtposex 6394 A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 ∈ V       tpos 𝐹 ∈ V
 
Theoremnftpos 6395 Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝑥𝐹       𝑥tpos 𝐹
 
Theoremtposoprab 6396* Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}       tpos 𝐹 = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremtposmpo 6397* Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       tpos 𝐹 = (𝑦𝐵, 𝑥𝐴𝐶)
 
2.6.18  Undefined values
 
Theorempwuninel2 6398 The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Stefan O'Rear, 22-Feb-2015.)
( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
 
Theorem2pwuninelg 6399 The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.)
(𝐴𝑉 → ¬ 𝒫 𝒫 𝐴𝐴)
 
2.6.19  Functions on ordinals; strictly monotone ordinal functions
 
Theoremiunon 6400* The indexed union of a set of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.)
((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → 𝑥𝐴 𝐵 ∈ On)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >