HomeHome Intuitionistic Logic Explorer
Theorem List (p. 64 of 135)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6301-6400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnffrec 6301 Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
𝑥𝐹    &   𝑥𝐴       𝑥frec(𝐹, 𝐴)
 
Theoremfrec0g 6302 The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.)
(𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
 
Theoremfrecabex 6303* The class abstraction from df-frec 6296 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.)
(𝜑𝑆𝑉)    &   (𝜑 → ∀𝑦(𝐹𝑦) ∈ V)    &   (𝜑𝐴𝑊)       (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
 
Theoremfrecabcl 6304* The class abstraction from df-frec 6296 exists. Unlike frecabex 6303 the function 𝐹 only needs to be defined on 𝑆, not all sets. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 21-Mar-2022.)
(𝜑𝑁 ∈ ω)    &   (𝜑𝐺:𝑁𝑆)    &   (𝜑 → ∀𝑦𝑆 (𝐹𝑦) ∈ 𝑆)    &   (𝜑𝐴𝑆)       (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚𝑥 ∈ (𝐹‘(𝐺𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
 
Theoremfrectfr 6305* Lemma to connect transfinite recursion theorems with finite recursion. That is, given the conditions 𝐹 Fn V and 𝐴𝑉 on frec(𝐹, 𝐴), we want to be able to apply tfri1d 6240 or tfri2d 6241, and this lemma lets us satisfy hypotheses of those theorems.

(Contributed by Jim Kingdon, 15-Aug-2019.)

𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})       ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
 
Theoremfrecfnom 6306* The function generated by finite recursive definition generation is a function on omega. (Contributed by Jim Kingdon, 13-May-2020.)
((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → frec(𝐹, 𝐴) Fn ω)
 
Theoremfreccllem 6307* Lemma for freccl 6308. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.)
(𝜑𝐴𝑆)    &   ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)    &   (𝜑𝐵 ∈ ω)    &   𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))       (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
 
Theoremfreccl 6308* Closure for finite recursion. (Contributed by Jim Kingdon, 27-Mar-2022.)
(𝜑𝐴𝑆)    &   ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)    &   (𝜑𝐵 ∈ ω)       (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
 
Theoremfrecfcllem 6309* Lemma for frecfcl 6310. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.)
𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))       ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
 
Theoremfrecfcl 6310* Finite recursion yields a function on the natural numbers. (Contributed by Jim Kingdon, 30-Mar-2022.)
((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
 
Theoremfrecsuclem 6311* Lemma for frecsuc 6312. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 29-Mar-2022.)
𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})       ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
 
Theoremfrecsuc 6312* The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 31-Mar-2022.)
((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
 
Theoremfrecrdg 6313* Transfinite recursion restricted to omega.

Given a suitable characteristic function, df-frec 6296 produces the same results as df-irdg 6275 restricted to ω.

Presumably the theorem would also hold if 𝐹 Fn V were changed to 𝑧(𝐹𝑧) ∈ V. (Contributed by Jim Kingdon, 29-Aug-2019.)

(𝜑𝐹 Fn V)    &   (𝜑𝐴𝑉)    &   (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))       (𝜑 → frec(𝐹, 𝐴) = (rec(𝐹, 𝐴) ↾ ω))
 
2.6.22  Ordinal arithmetic
 
Syntaxc1o 6314 Extend the definition of a class to include the ordinal number 1.
class 1o
 
Syntaxc2o 6315 Extend the definition of a class to include the ordinal number 2.
class 2o
 
Syntaxc3o 6316 Extend the definition of a class to include the ordinal number 3.
class 3o
 
Syntaxc4o 6317 Extend the definition of a class to include the ordinal number 4.
class 4o
 
Syntaxcoa 6318 Extend the definition of a class to include the ordinal addition operation.
class +o
 
Syntaxcomu 6319 Extend the definition of a class to include the ordinal multiplication operation.
class ·o
 
Syntaxcoei 6320 Extend the definition of a class to include the ordinal exponentiation operation.
class o
 
Definitiondf-1o 6321 Define the ordinal number 1. (Contributed by NM, 29-Oct-1995.)
1o = suc ∅
 
Definitiondf-2o 6322 Define the ordinal number 2. (Contributed by NM, 18-Feb-2004.)
2o = suc 1o
 
Definitiondf-3o 6323 Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.)
3o = suc 2o
 
Definitiondf-4o 6324 Define the ordinal number 4. (Contributed by Mario Carneiro, 14-Jul-2013.)
4o = suc 3o
 
Definitiondf-oadd 6325* Define the ordinal addition operation. (Contributed by NM, 3-May-1995.)
+o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
 
Definitiondf-omul 6326* Define the ordinal multiplication operation. (Contributed by NM, 26-Aug-1995.)
·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦))
 
Definitiondf-oexpi 6327* Define the ordinal exponentiation operation.

This definition is similar to a conventional definition of exponentiation except that it defines ∅ ↑o 𝐴 to be 1o for all 𝐴 ∈ On, in order to avoid having different cases for whether the base is or not. (Contributed by Mario Carneiro, 4-Jul-2019.)

o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))
 
Theorem1on 6328 Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.)
1o ∈ On
 
Theorem1oex 6329 Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.)
1o ∈ V
 
Theorem2on 6330 Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
2o ∈ On
 
Theorem2on0 6331 Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.)
2o ≠ ∅
 
Theorem3on 6332 Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.)
3o ∈ On
 
Theorem4on 6333 Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.)
4o ∈ On
 
Theoremdf1o2 6334 Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
1o = {∅}
 
Theoremdf2o3 6335 Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.)
2o = {∅, 1o}
 
Theoremdf2o2 6336 Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
2o = {∅, {∅}}
 
Theorem1n0 6337 Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.)
1o ≠ ∅
 
Theoremxp01disj 6338 Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.)
((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅
 
Theoremxp01disjl 6339 Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.)
(({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅
 
Theoremordgt0ge1 6340 Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.)
(Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
 
Theoremordge1n0im 6341 An ordinal greater than or equal to 1 is nonzero. (Contributed by Jim Kingdon, 26-Jun-2019.)
(Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))
 
Theoremel1o 6342 Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
(𝐴 ∈ 1o𝐴 = ∅)
 
Theoremdif1o 6343 Two ways to say that 𝐴 is a nonzero number of the set 𝐵. (Contributed by Mario Carneiro, 21-May-2015.)
(𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴𝐵𝐴 ≠ ∅))
 
Theorem2oconcl 6344 Closure of the pair swapping function on 2o. (Contributed by Mario Carneiro, 27-Sep-2015.)
(𝐴 ∈ 2o → (1o𝐴) ∈ 2o)
 
Theorem0lt1o 6345 Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.)
∅ ∈ 1o
 
Theorem0lt2o 6346 Ordinal zero is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.)
∅ ∈ 2o
 
Theorem1lt2o 6347 Ordinal one is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.)
1o ∈ 2o
 
Theoremoafnex 6348 The characteristic function for ordinal addition is defined everywhere. (Contributed by Jim Kingdon, 27-Jul-2019.)
(𝑥 ∈ V ↦ suc 𝑥) Fn V
 
Theoremsucinc 6349* Successor is increasing. (Contributed by Jim Kingdon, 25-Jun-2019.)
𝐹 = (𝑧 ∈ V ↦ suc 𝑧)       𝑥 𝑥 ⊆ (𝐹𝑥)
 
Theoremsucinc2 6350* Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.)
𝐹 = (𝑧 ∈ V ↦ suc 𝑧)       ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
 
Theoremfnoa 6351 Functionality and domain of ordinal addition. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Mario Carneiro, 3-Jul-2019.)
+o Fn (On × On)
 
Theoremoaexg 6352 Ordinal addition is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
((𝐴𝑉𝐵𝑊) → (𝐴 +o 𝐵) ∈ V)
 
Theoremomfnex 6353* The characteristic function for ordinal multiplication is defined everywhere. (Contributed by Jim Kingdon, 23-Aug-2019.)
(𝐴𝑉 → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V)
 
Theoremfnom 6354 Functionality and domain of ordinal multiplication. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 3-Jul-2019.)
·o Fn (On × On)
 
Theoremomexg 6355 Ordinal multiplication is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
((𝐴𝑉𝐵𝑊) → (𝐴 ·o 𝐵) ∈ V)
 
Theoremfnoei 6356 Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.) (Revised by Mario Carneiro, 3-Jul-2019.)
o Fn (On × On)
 
Theoremoeiexg 6357 Ordinal exponentiation is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
((𝐴𝑉𝐵𝑊) → (𝐴o 𝐵) ∈ V)
 
Theoremoav 6358* Value of ordinal addition. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
 
Theoremomv 6359* Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
 
Theoremoeiv 6360* Value of ordinal exponentiation. (Contributed by Jim Kingdon, 9-Jul-2019.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
 
Theoremoa0 6361 Addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
(𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
 
Theoremom0 6362 Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
(𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
 
Theoremoei0 6363 Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
(𝐴 ∈ On → (𝐴o ∅) = 1o)
 
Theoremoacl 6364 Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.) (Constructive proof by Jim Kingdon, 26-Jul-2019.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
 
Theoremomcl 6365 Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. (Contributed by NM, 3-Aug-2004.) (Constructive proof by Jim Kingdon, 26-Jul-2019.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
 
Theoremoeicl 6366 Closure law for ordinal exponentiation. (Contributed by Jim Kingdon, 26-Jul-2019.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
 
Theoremoav2 6367* Value of ordinal addition. (Contributed by Mario Carneiro and Jim Kingdon, 12-Aug-2019.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 𝑥𝐵 suc (𝐴 +o 𝑥)))
 
Theoremoasuc 6368 Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵))
 
Theoremomv2 6369* Value of ordinal multiplication. (Contributed by Jim Kingdon, 23-Aug-2019.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴))
 
Theoremonasuc 6370 Addition with successor. Theorem 4I(A2) of [Enderton] p. 79. (Contributed by Mario Carneiro, 16-Nov-2014.)
((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵))
 
Theoremoa1suc 6371 Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.)
(𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)
 
Theoremo1p1e2 6372 1 + 1 = 2 for ordinal numbers. (Contributed by NM, 18-Feb-2004.)
(1o +o 1o) = 2o
 
Theoremoawordi 6373 Weak ordering property of ordinal addition. (Contributed by Jim Kingdon, 27-Jul-2019.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
 
Theoremoawordriexmid 6374* A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6373. (Contributed by Jim Kingdon, 15-May-2022.)
((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)))       (𝜑 ∨ ¬ 𝜑)
 
Theoremoaword1 6375 An ordinal is less than or equal to its sum with another. Part of Exercise 5 of [TakeutiZaring] p. 62. (Contributed by NM, 6-Dec-2004.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))
 
Theoremomsuc 6376 Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
 
Theoremonmsuc 6377 Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
 
2.6.23  Natural number arithmetic
 
Theoremnna0 6378 Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.)
(𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
 
Theoremnnm0 6379 Multiplication with zero. Theorem 4J(A1) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.)
(𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
 
Theoremnnasuc 6380 Addition with successor. Theorem 4I(A2) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵))
 
Theoremnnmsuc 6381 Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
 
Theoremnna0r 6382 Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
(𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴)
 
Theoremnnm0r 6383 Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
(𝐴 ∈ ω → (∅ ·o 𝐴) = ∅)
 
Theoremnnacl 6384 Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
 
Theoremnnmcl 6385 Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
 
Theoremnnacli 6386 ω is closed under addition. Inference form of nnacl 6384. (Contributed by Scott Fenton, 20-Apr-2012.)
𝐴 ∈ ω    &   𝐵 ∈ ω       (𝐴 +o 𝐵) ∈ ω
 
Theoremnnmcli 6387 ω is closed under multiplication. Inference form of nnmcl 6385. (Contributed by Scott Fenton, 20-Apr-2012.)
𝐴 ∈ ω    &   𝐵 ∈ ω       (𝐴 ·o 𝐵) ∈ ω
 
Theoremnnacom 6388 Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴))
 
Theoremnnaass 6389 Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))
 
Theoremnndi 6390 Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
 
Theoremnnmass 6391 Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))
 
Theoremnnmsucr 6392 Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))
 
Theoremnnmcom 6393 Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))
 
Theoremnndir 6394 Distributive law for natural numbers (right-distributivity). (Contributed by Jim Kingdon, 3-Dec-2019.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) +o (𝐵 ·o 𝐶)))
 
Theoremnnsucelsuc 6395 Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucelsucr 4432, but the forward direction, for all ordinals, implies excluded middle as seen as onsucelsucexmid 4453. (Contributed by Jim Kingdon, 25-Aug-2019.)
(𝐵 ∈ ω → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
 
Theoremnnsucsssuc 6396 Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4433, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4450. (Contributed by Jim Kingdon, 25-Aug-2019.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
 
Theoremnntri3or 6397 Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
 
Theoremnntri2 6398 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
 
Theoremnnsucuniel 6399 Given an element 𝐴 of the union of a natural number 𝐵, suc 𝐴 is an element of 𝐵 itself. The reverse direction holds for all ordinals (sucunielr 4434). The forward direction for all ordinals implies excluded middle (ordsucunielexmid 4454). (Contributed by Jim Kingdon, 13-Mar-2022.)
(𝐵 ∈ ω → (𝐴 𝐵 ↔ suc 𝐴𝐵))
 
Theoremnntri1 6400 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >