ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr0dm GIF version

Theorem tfr0dm 6149
Description: Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr0dm ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹)

Proof of Theorem tfr0dm
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 3995 . . . . 5 ∅ ∈ V
2 opexg 4088 . . . . 5 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → ⟨∅, (𝐺‘∅)⟩ ∈ V)
31, 2mpan 418 . . . 4 ((𝐺‘∅) ∈ 𝑉 → ⟨∅, (𝐺‘∅)⟩ ∈ V)
4 snidg 3501 . . . 4 (⟨∅, (𝐺‘∅)⟩ ∈ V → ⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩})
53, 4syl 14 . . 3 ((𝐺‘∅) ∈ 𝑉 → ⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩})
6 fnsng 5106 . . . . 5 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → {⟨∅, (𝐺‘∅)⟩} Fn {∅})
71, 6mpan 418 . . . 4 ((𝐺‘∅) ∈ 𝑉 → {⟨∅, (𝐺‘∅)⟩} Fn {∅})
8 fvsng 5548 . . . . . . 7 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘∅))
91, 8mpan 418 . . . . . 6 ((𝐺‘∅) ∈ 𝑉 → ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘∅))
10 res0 4759 . . . . . . 7 ({⟨∅, (𝐺‘∅)⟩} ↾ ∅) = ∅
1110fveq2i 5356 . . . . . 6 (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)) = (𝐺‘∅)
129, 11syl6eqr 2150 . . . . 5 ((𝐺‘∅) ∈ 𝑉 → ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)))
13 fveq2 5353 . . . . . . 7 (𝑦 = ∅ → ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = ({⟨∅, (𝐺‘∅)⟩}‘∅))
14 reseq2 4750 . . . . . . . 8 (𝑦 = ∅ → ({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦) = ({⟨∅, (𝐺‘∅)⟩} ↾ ∅))
1514fveq2d 5357 . . . . . . 7 (𝑦 = ∅ → (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)))
1613, 15eqeq12d 2114 . . . . . 6 (𝑦 = ∅ → (({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) ↔ ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅))))
171, 16ralsn 3514 . . . . 5 (∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) ↔ ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)))
1812, 17sylibr 133 . . . 4 ((𝐺‘∅) ∈ 𝑉 → ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))
19 suc0 4271 . . . . . 6 suc ∅ = {∅}
20 0elon 4252 . . . . . . 7 ∅ ∈ On
2120onsuci 4370 . . . . . 6 suc ∅ ∈ On
2219, 21eqeltrri 2173 . . . . 5 {∅} ∈ On
23 fneq2 5148 . . . . . . 7 (𝑥 = {∅} → ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ↔ {⟨∅, (𝐺‘∅)⟩} Fn {∅}))
24 raleq 2584 . . . . . . 7 (𝑥 = {∅} → (∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) ↔ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
2523, 24anbi12d 460 . . . . . 6 (𝑥 = {∅} → (({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))) ↔ ({⟨∅, (𝐺‘∅)⟩} Fn {∅} ∧ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))))
2625rspcev 2744 . . . . 5 (({∅} ∈ On ∧ ({⟨∅, (𝐺‘∅)⟩} Fn {∅} ∧ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
2722, 26mpan 418 . . . 4 (({⟨∅, (𝐺‘∅)⟩} Fn {∅} ∧ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))) → ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
287, 18, 27syl2anc 406 . . 3 ((𝐺‘∅) ∈ 𝑉 → ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
29 snexg 4048 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ V → {⟨∅, (𝐺‘∅)⟩} ∈ V)
30 eleq2 2163 . . . . . . 7 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ↔ ⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩}))
31 fneq1 5147 . . . . . . . . 9 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝑓 Fn 𝑥 ↔ {⟨∅, (𝐺‘∅)⟩} Fn 𝑥))
32 fveq1 5352 . . . . . . . . . . 11 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝑓𝑦) = ({⟨∅, (𝐺‘∅)⟩}‘𝑦))
33 reseq1 4749 . . . . . . . . . . . 12 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝑓𝑦) = ({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))
3433fveq2d 5357 . . . . . . . . . . 11 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝐺‘(𝑓𝑦)) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))
3532, 34eqeq12d 2114 . . . . . . . . . 10 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
3635ralbidv 2396 . . . . . . . . 9 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
3731, 36anbi12d 460 . . . . . . . 8 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))))
3837rexbidv 2397 . . . . . . 7 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))))
3930, 38anbi12d 460 . . . . . 6 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → ((⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))) ↔ (⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))))
4039spcegv 2729 . . . . 5 ({⟨∅, (𝐺‘∅)⟩} ∈ V → ((⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))))
413, 29, 403syl 17 . . . 4 ((𝐺‘∅) ∈ 𝑉 → ((⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))))
42 tfr.1 . . . . . 6 𝐹 = recs(𝐺)
4342eleq2i 2166 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 ↔ ⟨∅, (𝐺‘∅)⟩ ∈ recs(𝐺))
44 df-recs 6132 . . . . . 6 recs(𝐺) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
4544eleq2i 2166 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ recs(𝐺) ↔ ⟨∅, (𝐺‘∅)⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
46 eluniab 3695 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ↔ ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
4743, 45, 463bitri 205 . . . 4 (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 ↔ ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
4841, 47syl6ibr 161 . . 3 ((𝐺‘∅) ∈ 𝑉 → ((⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ⟨∅, (𝐺‘∅)⟩ ∈ 𝐹))
495, 28, 48mp2and 427 . 2 ((𝐺‘∅) ∈ 𝑉 → ⟨∅, (𝐺‘∅)⟩ ∈ 𝐹)
50 opeldmg 4682 . . 3 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 → ∅ ∈ dom 𝐹))
511, 50mpan 418 . 2 ((𝐺‘∅) ∈ 𝑉 → (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 → ∅ ∈ dom 𝐹))
5249, 51mpd 13 1 ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wex 1436  wcel 1448  {cab 2086  wral 2375  wrex 2376  Vcvv 2641  c0 3310  {csn 3474  cop 3477   cuni 3683  Oncon0 4223  suc csuc 4225  dom cdm 4477  cres 4479   Fn wfn 5054  cfv 5059  recscrecs 6131
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-res 4489  df-iota 5024  df-fun 5061  df-fn 5062  df-fv 5067  df-recs 6132
This theorem is referenced by:  tfr0  6150
  Copyright terms: Public domain W3C validator