ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr0dm GIF version

Theorem tfr0dm 6407
Description: Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr0dm ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹)

Proof of Theorem tfr0dm
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4170 . . . . 5 ∅ ∈ V
2 opexg 4271 . . . . 5 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → ⟨∅, (𝐺‘∅)⟩ ∈ V)
31, 2mpan 424 . . . 4 ((𝐺‘∅) ∈ 𝑉 → ⟨∅, (𝐺‘∅)⟩ ∈ V)
4 snidg 3661 . . . 4 (⟨∅, (𝐺‘∅)⟩ ∈ V → ⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩})
53, 4syl 14 . . 3 ((𝐺‘∅) ∈ 𝑉 → ⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩})
6 fnsng 5320 . . . . 5 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → {⟨∅, (𝐺‘∅)⟩} Fn {∅})
71, 6mpan 424 . . . 4 ((𝐺‘∅) ∈ 𝑉 → {⟨∅, (𝐺‘∅)⟩} Fn {∅})
8 fvsng 5779 . . . . . . 7 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘∅))
91, 8mpan 424 . . . . . 6 ((𝐺‘∅) ∈ 𝑉 → ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘∅))
10 res0 4962 . . . . . . 7 ({⟨∅, (𝐺‘∅)⟩} ↾ ∅) = ∅
1110fveq2i 5578 . . . . . 6 (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)) = (𝐺‘∅)
129, 11eqtr4di 2255 . . . . 5 ((𝐺‘∅) ∈ 𝑉 → ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)))
13 fveq2 5575 . . . . . . 7 (𝑦 = ∅ → ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = ({⟨∅, (𝐺‘∅)⟩}‘∅))
14 reseq2 4953 . . . . . . . 8 (𝑦 = ∅ → ({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦) = ({⟨∅, (𝐺‘∅)⟩} ↾ ∅))
1514fveq2d 5579 . . . . . . 7 (𝑦 = ∅ → (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)))
1613, 15eqeq12d 2219 . . . . . 6 (𝑦 = ∅ → (({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) ↔ ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅))))
171, 16ralsn 3675 . . . . 5 (∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) ↔ ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)))
1812, 17sylibr 134 . . . 4 ((𝐺‘∅) ∈ 𝑉 → ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))
19 suc0 4457 . . . . . 6 suc ∅ = {∅}
20 0elon 4438 . . . . . . 7 ∅ ∈ On
2120onsuci 4563 . . . . . 6 suc ∅ ∈ On
2219, 21eqeltrri 2278 . . . . 5 {∅} ∈ On
23 fneq2 5362 . . . . . . 7 (𝑥 = {∅} → ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ↔ {⟨∅, (𝐺‘∅)⟩} Fn {∅}))
24 raleq 2701 . . . . . . 7 (𝑥 = {∅} → (∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) ↔ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
2523, 24anbi12d 473 . . . . . 6 (𝑥 = {∅} → (({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))) ↔ ({⟨∅, (𝐺‘∅)⟩} Fn {∅} ∧ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))))
2625rspcev 2876 . . . . 5 (({∅} ∈ On ∧ ({⟨∅, (𝐺‘∅)⟩} Fn {∅} ∧ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
2722, 26mpan 424 . . . 4 (({⟨∅, (𝐺‘∅)⟩} Fn {∅} ∧ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))) → ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
287, 18, 27syl2anc 411 . . 3 ((𝐺‘∅) ∈ 𝑉 → ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
29 snexg 4227 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ V → {⟨∅, (𝐺‘∅)⟩} ∈ V)
30 eleq2 2268 . . . . . . 7 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ↔ ⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩}))
31 fneq1 5361 . . . . . . . . 9 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝑓 Fn 𝑥 ↔ {⟨∅, (𝐺‘∅)⟩} Fn 𝑥))
32 fveq1 5574 . . . . . . . . . . 11 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝑓𝑦) = ({⟨∅, (𝐺‘∅)⟩}‘𝑦))
33 reseq1 4952 . . . . . . . . . . . 12 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝑓𝑦) = ({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))
3433fveq2d 5579 . . . . . . . . . . 11 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝐺‘(𝑓𝑦)) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))
3532, 34eqeq12d 2219 . . . . . . . . . 10 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
3635ralbidv 2505 . . . . . . . . 9 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
3731, 36anbi12d 473 . . . . . . . 8 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))))
3837rexbidv 2506 . . . . . . 7 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))))
3930, 38anbi12d 473 . . . . . 6 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → ((⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))) ↔ (⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))))
4039spcegv 2860 . . . . 5 ({⟨∅, (𝐺‘∅)⟩} ∈ V → ((⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))))
413, 29, 403syl 17 . . . 4 ((𝐺‘∅) ∈ 𝑉 → ((⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))))
42 tfr.1 . . . . . 6 𝐹 = recs(𝐺)
4342eleq2i 2271 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 ↔ ⟨∅, (𝐺‘∅)⟩ ∈ recs(𝐺))
44 df-recs 6390 . . . . . 6 recs(𝐺) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
4544eleq2i 2271 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ recs(𝐺) ↔ ⟨∅, (𝐺‘∅)⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
46 eluniab 3861 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ↔ ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
4743, 45, 463bitri 206 . . . 4 (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 ↔ ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
4841, 47imbitrrdi 162 . . 3 ((𝐺‘∅) ∈ 𝑉 → ((⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ⟨∅, (𝐺‘∅)⟩ ∈ 𝐹))
495, 28, 48mp2and 433 . 2 ((𝐺‘∅) ∈ 𝑉 → ⟨∅, (𝐺‘∅)⟩ ∈ 𝐹)
50 opeldmg 4882 . . 3 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 → ∅ ∈ dom 𝐹))
511, 50mpan 424 . 2 ((𝐺‘∅) ∈ 𝑉 → (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 → ∅ ∈ dom 𝐹))
5249, 51mpd 13 1 ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wex 1514  wcel 2175  {cab 2190  wral 2483  wrex 2484  Vcvv 2771  c0 3459  {csn 3632  cop 3635   cuni 3849  Oncon0 4409  suc csuc 4411  dom cdm 4674  cres 4676   Fn wfn 5265  cfv 5270  recscrecs 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-recs 6390
This theorem is referenced by:  tfr0  6408
  Copyright terms: Public domain W3C validator