Step | Hyp | Ref
| Expression |
1 | | 0ex 4116 |
. . . . 5
⊢ ∅
∈ V |
2 | | opexg 4213 |
. . . . 5
⊢ ((∅
∈ V ∧ (𝐺‘∅) ∈ 𝑉) → 〈∅, (𝐺‘∅)〉 ∈
V) |
3 | 1, 2 | mpan 422 |
. . . 4
⊢ ((𝐺‘∅) ∈ 𝑉 → 〈∅, (𝐺‘∅)〉 ∈
V) |
4 | | snidg 3612 |
. . . 4
⊢
(〈∅, (𝐺‘∅)〉 ∈ V →
〈∅, (𝐺‘∅)〉 ∈ {〈∅,
(𝐺‘∅)〉}) |
5 | 3, 4 | syl 14 |
. . 3
⊢ ((𝐺‘∅) ∈ 𝑉 → 〈∅, (𝐺‘∅)〉 ∈
{〈∅, (𝐺‘∅)〉}) |
6 | | fnsng 5245 |
. . . . 5
⊢ ((∅
∈ V ∧ (𝐺‘∅) ∈ 𝑉) → {〈∅, (𝐺‘∅)〉} Fn
{∅}) |
7 | 1, 6 | mpan 422 |
. . . 4
⊢ ((𝐺‘∅) ∈ 𝑉 → {〈∅, (𝐺‘∅)〉} Fn
{∅}) |
8 | | fvsng 5692 |
. . . . . . 7
⊢ ((∅
∈ V ∧ (𝐺‘∅) ∈ 𝑉) → ({〈∅, (𝐺‘∅)〉}‘∅) =
(𝐺‘∅)) |
9 | 1, 8 | mpan 422 |
. . . . . 6
⊢ ((𝐺‘∅) ∈ 𝑉 → ({〈∅, (𝐺‘∅)〉}‘∅) =
(𝐺‘∅)) |
10 | | res0 4895 |
. . . . . . 7
⊢
({〈∅, (𝐺‘∅)〉} ↾ ∅) =
∅ |
11 | 10 | fveq2i 5499 |
. . . . . 6
⊢ (𝐺‘({〈∅, (𝐺‘∅)〉} ↾
∅)) = (𝐺‘∅) |
12 | 9, 11 | eqtr4di 2221 |
. . . . 5
⊢ ((𝐺‘∅) ∈ 𝑉 → ({〈∅, (𝐺‘∅)〉}‘∅) =
(𝐺‘({〈∅,
(𝐺‘∅)〉}
↾ ∅))) |
13 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑦 = ∅ →
({〈∅, (𝐺‘∅)〉}‘𝑦) = ({〈∅, (𝐺‘∅)〉}‘∅)) |
14 | | reseq2 4886 |
. . . . . . . 8
⊢ (𝑦 = ∅ →
({〈∅, (𝐺‘∅)〉} ↾ 𝑦) = ({〈∅, (𝐺‘∅)〉} ↾
∅)) |
15 | 14 | fveq2d 5500 |
. . . . . . 7
⊢ (𝑦 = ∅ → (𝐺‘({〈∅, (𝐺‘∅)〉} ↾
𝑦)) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾
∅))) |
16 | 13, 15 | eqeq12d 2185 |
. . . . . 6
⊢ (𝑦 = ∅ →
(({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦)) ↔ ({〈∅,
(𝐺‘∅)〉}‘∅) =
(𝐺‘({〈∅,
(𝐺‘∅)〉}
↾ ∅)))) |
17 | 1, 16 | ralsn 3626 |
. . . . 5
⊢
(∀𝑦 ∈
{∅} ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦)) ↔ ({〈∅,
(𝐺‘∅)〉}‘∅) =
(𝐺‘({〈∅,
(𝐺‘∅)〉}
↾ ∅))) |
18 | 12, 17 | sylibr 133 |
. . . 4
⊢ ((𝐺‘∅) ∈ 𝑉 → ∀𝑦 ∈ {∅}
({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦))) |
19 | | suc0 4396 |
. . . . . 6
⊢ suc
∅ = {∅} |
20 | | 0elon 4377 |
. . . . . . 7
⊢ ∅
∈ On |
21 | 20 | onsuci 4500 |
. . . . . 6
⊢ suc
∅ ∈ On |
22 | 19, 21 | eqeltrri 2244 |
. . . . 5
⊢ {∅}
∈ On |
23 | | fneq2 5287 |
. . . . . . 7
⊢ (𝑥 = {∅} →
({〈∅, (𝐺‘∅)〉} Fn 𝑥 ↔ {〈∅, (𝐺‘∅)〉} Fn
{∅})) |
24 | | raleq 2665 |
. . . . . . 7
⊢ (𝑥 = {∅} →
(∀𝑦 ∈ 𝑥 ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦)) ↔ ∀𝑦 ∈ {∅}
({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦)))) |
25 | 23, 24 | anbi12d 470 |
. . . . . 6
⊢ (𝑥 = {∅} →
(({〈∅, (𝐺‘∅)〉} Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦))) ↔ ({〈∅,
(𝐺‘∅)〉} Fn
{∅} ∧ ∀𝑦
∈ {∅} ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦))))) |
26 | 25 | rspcev 2834 |
. . . . 5
⊢
(({∅} ∈ On ∧ ({〈∅, (𝐺‘∅)〉} Fn {∅} ∧
∀𝑦 ∈ {∅}
({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦)))) → ∃𝑥 ∈ On ({〈∅,
(𝐺‘∅)〉} Fn
𝑥 ∧ ∀𝑦 ∈ 𝑥 ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦)))) |
27 | 22, 26 | mpan 422 |
. . . 4
⊢
(({〈∅, (𝐺‘∅)〉} Fn {∅} ∧
∀𝑦 ∈ {∅}
({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦))) → ∃𝑥 ∈ On ({〈∅,
(𝐺‘∅)〉} Fn
𝑥 ∧ ∀𝑦 ∈ 𝑥 ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦)))) |
28 | 7, 18, 27 | syl2anc 409 |
. . 3
⊢ ((𝐺‘∅) ∈ 𝑉 → ∃𝑥 ∈ On ({〈∅,
(𝐺‘∅)〉} Fn
𝑥 ∧ ∀𝑦 ∈ 𝑥 ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦)))) |
29 | | snexg 4170 |
. . . . 5
⊢
(〈∅, (𝐺‘∅)〉 ∈ V →
{〈∅, (𝐺‘∅)〉} ∈
V) |
30 | | eleq2 2234 |
. . . . . . 7
⊢ (𝑓 = {〈∅, (𝐺‘∅)〉} →
(〈∅, (𝐺‘∅)〉 ∈ 𝑓 ↔ 〈∅, (𝐺‘∅)〉 ∈
{〈∅, (𝐺‘∅)〉})) |
31 | | fneq1 5286 |
. . . . . . . . 9
⊢ (𝑓 = {〈∅, (𝐺‘∅)〉} →
(𝑓 Fn 𝑥 ↔ {〈∅, (𝐺‘∅)〉} Fn 𝑥)) |
32 | | fveq1 5495 |
. . . . . . . . . . 11
⊢ (𝑓 = {〈∅, (𝐺‘∅)〉} →
(𝑓‘𝑦) = ({〈∅, (𝐺‘∅)〉}‘𝑦)) |
33 | | reseq1 4885 |
. . . . . . . . . . . 12
⊢ (𝑓 = {〈∅, (𝐺‘∅)〉} →
(𝑓 ↾ 𝑦) = ({〈∅, (𝐺‘∅)〉} ↾
𝑦)) |
34 | 33 | fveq2d 5500 |
. . . . . . . . . . 11
⊢ (𝑓 = {〈∅, (𝐺‘∅)〉} →
(𝐺‘(𝑓 ↾ 𝑦)) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦))) |
35 | 32, 34 | eqeq12d 2185 |
. . . . . . . . . 10
⊢ (𝑓 = {〈∅, (𝐺‘∅)〉} →
((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦)))) |
36 | 35 | ralbidv 2470 |
. . . . . . . . 9
⊢ (𝑓 = {〈∅, (𝐺‘∅)〉} →
(∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ ∀𝑦 ∈ 𝑥 ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦)))) |
37 | 31, 36 | anbi12d 470 |
. . . . . . . 8
⊢ (𝑓 = {〈∅, (𝐺‘∅)〉} →
((𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ ({〈∅, (𝐺‘∅)〉} Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦))))) |
38 | 37 | rexbidv 2471 |
. . . . . . 7
⊢ (𝑓 = {〈∅, (𝐺‘∅)〉} →
(∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ ∃𝑥 ∈ On ({〈∅, (𝐺‘∅)〉} Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦))))) |
39 | 30, 38 | anbi12d 470 |
. . . . . 6
⊢ (𝑓 = {〈∅, (𝐺‘∅)〉} →
((〈∅, (𝐺‘∅)〉 ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))) ↔ (〈∅, (𝐺‘∅)〉 ∈
{〈∅, (𝐺‘∅)〉} ∧ ∃𝑥 ∈ On ({〈∅,
(𝐺‘∅)〉} Fn
𝑥 ∧ ∀𝑦 ∈ 𝑥 ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦)))))) |
40 | 39 | spcegv 2818 |
. . . . 5
⊢
({〈∅, (𝐺‘∅)〉} ∈ V →
((〈∅, (𝐺‘∅)〉 ∈ {〈∅,
(𝐺‘∅)〉}
∧ ∃𝑥 ∈ On
({〈∅, (𝐺‘∅)〉} Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦)))) → ∃𝑓(〈∅, (𝐺‘∅)〉 ∈
𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))))) |
41 | 3, 29, 40 | 3syl 17 |
. . . 4
⊢ ((𝐺‘∅) ∈ 𝑉 → ((〈∅, (𝐺‘∅)〉 ∈
{〈∅, (𝐺‘∅)〉} ∧ ∃𝑥 ∈ On ({〈∅,
(𝐺‘∅)〉} Fn
𝑥 ∧ ∀𝑦 ∈ 𝑥 ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦)))) → ∃𝑓(〈∅, (𝐺‘∅)〉 ∈
𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))))) |
42 | | tfr.1 |
. . . . . 6
⊢ 𝐹 = recs(𝐺) |
43 | 42 | eleq2i 2237 |
. . . . 5
⊢
(〈∅, (𝐺‘∅)〉 ∈ 𝐹 ↔ 〈∅, (𝐺‘∅)〉 ∈
recs(𝐺)) |
44 | | df-recs 6284 |
. . . . . 6
⊢
recs(𝐺) = ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
45 | 44 | eleq2i 2237 |
. . . . 5
⊢
(〈∅, (𝐺‘∅)〉 ∈ recs(𝐺) ↔ 〈∅, (𝐺‘∅)〉 ∈
∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))}) |
46 | | eluniab 3808 |
. . . . 5
⊢
(〈∅, (𝐺‘∅)〉 ∈ ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ↔ ∃𝑓(〈∅, (𝐺‘∅)〉 ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))))) |
47 | 43, 45, 46 | 3bitri 205 |
. . . 4
⊢
(〈∅, (𝐺‘∅)〉 ∈ 𝐹 ↔ ∃𝑓(〈∅, (𝐺‘∅)〉 ∈
𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))))) |
48 | 41, 47 | syl6ibr 161 |
. . 3
⊢ ((𝐺‘∅) ∈ 𝑉 → ((〈∅, (𝐺‘∅)〉 ∈
{〈∅, (𝐺‘∅)〉} ∧ ∃𝑥 ∈ On ({〈∅,
(𝐺‘∅)〉} Fn
𝑥 ∧ ∀𝑦 ∈ 𝑥 ({〈∅, (𝐺‘∅)〉}‘𝑦) = (𝐺‘({〈∅, (𝐺‘∅)〉} ↾ 𝑦)))) → 〈∅,
(𝐺‘∅)〉
∈ 𝐹)) |
49 | 5, 28, 48 | mp2and 431 |
. 2
⊢ ((𝐺‘∅) ∈ 𝑉 → 〈∅, (𝐺‘∅)〉 ∈
𝐹) |
50 | | opeldmg 4816 |
. . 3
⊢ ((∅
∈ V ∧ (𝐺‘∅) ∈ 𝑉) → (〈∅, (𝐺‘∅)〉 ∈ 𝐹 → ∅ ∈ dom 𝐹)) |
51 | 1, 50 | mpan 422 |
. 2
⊢ ((𝐺‘∅) ∈ 𝑉 → (〈∅, (𝐺‘∅)〉 ∈
𝐹 → ∅ ∈ dom
𝐹)) |
52 | 49, 51 | mpd 13 |
1
⊢ ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹) |