Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr0dm GIF version

Theorem tfr0dm 6223
 Description: Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr0dm ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹)

Proof of Theorem tfr0dm
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4059 . . . . 5 ∅ ∈ V
2 opexg 4154 . . . . 5 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → ⟨∅, (𝐺‘∅)⟩ ∈ V)
31, 2mpan 421 . . . 4 ((𝐺‘∅) ∈ 𝑉 → ⟨∅, (𝐺‘∅)⟩ ∈ V)
4 snidg 3557 . . . 4 (⟨∅, (𝐺‘∅)⟩ ∈ V → ⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩})
53, 4syl 14 . . 3 ((𝐺‘∅) ∈ 𝑉 → ⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩})
6 fnsng 5174 . . . . 5 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → {⟨∅, (𝐺‘∅)⟩} Fn {∅})
71, 6mpan 421 . . . 4 ((𝐺‘∅) ∈ 𝑉 → {⟨∅, (𝐺‘∅)⟩} Fn {∅})
8 fvsng 5620 . . . . . . 7 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘∅))
91, 8mpan 421 . . . . . 6 ((𝐺‘∅) ∈ 𝑉 → ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘∅))
10 res0 4827 . . . . . . 7 ({⟨∅, (𝐺‘∅)⟩} ↾ ∅) = ∅
1110fveq2i 5428 . . . . . 6 (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)) = (𝐺‘∅)
129, 11eqtr4di 2191 . . . . 5 ((𝐺‘∅) ∈ 𝑉 → ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)))
13 fveq2 5425 . . . . . . 7 (𝑦 = ∅ → ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = ({⟨∅, (𝐺‘∅)⟩}‘∅))
14 reseq2 4818 . . . . . . . 8 (𝑦 = ∅ → ({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦) = ({⟨∅, (𝐺‘∅)⟩} ↾ ∅))
1514fveq2d 5429 . . . . . . 7 (𝑦 = ∅ → (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)))
1613, 15eqeq12d 2155 . . . . . 6 (𝑦 = ∅ → (({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) ↔ ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅))))
171, 16ralsn 3570 . . . . 5 (∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) ↔ ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)))
1812, 17sylibr 133 . . . 4 ((𝐺‘∅) ∈ 𝑉 → ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))
19 suc0 4337 . . . . . 6 suc ∅ = {∅}
20 0elon 4318 . . . . . . 7 ∅ ∈ On
2120onsuci 4436 . . . . . 6 suc ∅ ∈ On
2219, 21eqeltrri 2214 . . . . 5 {∅} ∈ On
23 fneq2 5216 . . . . . . 7 (𝑥 = {∅} → ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ↔ {⟨∅, (𝐺‘∅)⟩} Fn {∅}))
24 raleq 2627 . . . . . . 7 (𝑥 = {∅} → (∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) ↔ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
2523, 24anbi12d 465 . . . . . 6 (𝑥 = {∅} → (({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))) ↔ ({⟨∅, (𝐺‘∅)⟩} Fn {∅} ∧ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))))
2625rspcev 2790 . . . . 5 (({∅} ∈ On ∧ ({⟨∅, (𝐺‘∅)⟩} Fn {∅} ∧ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
2722, 26mpan 421 . . . 4 (({⟨∅, (𝐺‘∅)⟩} Fn {∅} ∧ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))) → ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
287, 18, 27syl2anc 409 . . 3 ((𝐺‘∅) ∈ 𝑉 → ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
29 snexg 4112 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ V → {⟨∅, (𝐺‘∅)⟩} ∈ V)
30 eleq2 2204 . . . . . . 7 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ↔ ⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩}))
31 fneq1 5215 . . . . . . . . 9 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝑓 Fn 𝑥 ↔ {⟨∅, (𝐺‘∅)⟩} Fn 𝑥))
32 fveq1 5424 . . . . . . . . . . 11 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝑓𝑦) = ({⟨∅, (𝐺‘∅)⟩}‘𝑦))
33 reseq1 4817 . . . . . . . . . . . 12 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝑓𝑦) = ({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))
3433fveq2d 5429 . . . . . . . . . . 11 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝐺‘(𝑓𝑦)) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))
3532, 34eqeq12d 2155 . . . . . . . . . 10 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
3635ralbidv 2438 . . . . . . . . 9 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
3731, 36anbi12d 465 . . . . . . . 8 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))))
3837rexbidv 2439 . . . . . . 7 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))))
3930, 38anbi12d 465 . . . . . 6 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → ((⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))) ↔ (⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))))
4039spcegv 2775 . . . . 5 ({⟨∅, (𝐺‘∅)⟩} ∈ V → ((⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))))
413, 29, 403syl 17 . . . 4 ((𝐺‘∅) ∈ 𝑉 → ((⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))))
42 tfr.1 . . . . . 6 𝐹 = recs(𝐺)
4342eleq2i 2207 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 ↔ ⟨∅, (𝐺‘∅)⟩ ∈ recs(𝐺))
44 df-recs 6206 . . . . . 6 recs(𝐺) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
4544eleq2i 2207 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ recs(𝐺) ↔ ⟨∅, (𝐺‘∅)⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
46 eluniab 3752 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ↔ ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
4743, 45, 463bitri 205 . . . 4 (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 ↔ ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
4841, 47syl6ibr 161 . . 3 ((𝐺‘∅) ∈ 𝑉 → ((⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ⟨∅, (𝐺‘∅)⟩ ∈ 𝐹))
495, 28, 48mp2and 430 . 2 ((𝐺‘∅) ∈ 𝑉 → ⟨∅, (𝐺‘∅)⟩ ∈ 𝐹)
50 opeldmg 4748 . . 3 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 → ∅ ∈ dom 𝐹))
511, 50mpan 421 . 2 ((𝐺‘∅) ∈ 𝑉 → (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 → ∅ ∈ dom 𝐹))
5249, 51mpd 13 1 ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332  ∃wex 1469   ∈ wcel 1481  {cab 2126  ∀wral 2417  ∃wrex 2418  Vcvv 2687  ∅c0 3364  {csn 3528  ⟨cop 3531  ∪ cuni 3740  Oncon0 4289  suc csuc 4291  dom cdm 4543   ↾ cres 4545   Fn wfn 5122  ‘cfv 5127  recscrecs 6205 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-nul 4058  ax-pow 4102  ax-pr 4135  ax-un 4359 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2689  df-sbc 2911  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-br 3934  df-opab 3994  df-tr 4031  df-id 4219  df-iord 4292  df-on 4294  df-suc 4297  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-res 4555  df-iota 5092  df-fun 5129  df-fn 5130  df-fv 5135  df-recs 6206 This theorem is referenced by:  tfr0  6224
 Copyright terms: Public domain W3C validator