HomeHome Intuitionistic Logic Explorer
Theorem List (p. 114 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11301-11400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-s7 11301 Define the length 7 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ ++ ⟨“𝐺”⟩)
 
Definitiondf-s8 11302 Define the length 8 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ++ ⟨“𝐻”⟩)
 
Theoremcats1cld 11303 Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   (𝜑𝑆 ∈ Word 𝐴)    &   (𝜑𝑋𝐴)       (𝜑𝑇 ∈ Word 𝐴)
 
Theoremcats1fvn 11304 The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   𝑆 ∈ Word V    &   (♯‘𝑆) = 𝑀       (𝑋𝑉 → (𝑇𝑀) = 𝑋)
 
Theoremcats1fvnd 11305 The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 20-Jan-2026.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   (𝜑𝑆 ∈ Word V)    &   (𝜑𝑋𝑉)    &   (𝜑 → (♯‘𝑆) = 𝑀)       (𝜑 → (𝑇𝑀) = 𝑋)
 
Theoremcats1fvd 11306 A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 20-Jan-2026.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   (𝜑𝑆 ∈ Word V)    &   (𝜑 → (♯‘𝑆) = 𝑀)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑊)    &   (𝜑 → (𝑆𝑁) = 𝑌)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑁 < 𝑀)       (𝜑 → (𝑇𝑁) = 𝑌)
 
Theoremcats1lend 11307 The length of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   (𝜑𝑆 ∈ Word V)    &   (𝜑𝑋𝑊)    &   (♯‘𝑆) = 𝑀    &   (𝑀 + 1) = 𝑁       (𝜑 → (♯‘𝑇) = 𝑁)
 
Theoremcats1catd 11308 Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
𝑇 = (𝑆 ++ ⟨“𝑋”⟩)    &   (𝜑𝐴 ∈ Word V)    &   (𝜑𝑆 ∈ Word V)    &   (𝜑𝑋𝑊)    &   (𝜑𝐶 = (𝐵 ++ ⟨“𝑋”⟩))    &   (𝜑𝐵 = (𝐴 ++ 𝑆))       (𝜑𝐶 = (𝐴 ++ 𝑇))
 
Theoremcats2catd 11309 Closure of concatenation of concatenations with singleton words. (Contributed by AV, 1-Mar-2021.) (Revised by Jim Kingdon, 19-Jan-2026.)
(𝜑𝐵 ∈ Word V)    &   (𝜑𝐷 ∈ Word V)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑊)    &   (𝜑𝐴 = (𝐵 ++ ⟨“𝑋”⟩))    &   (𝜑𝐶 = (⟨“𝑌”⟩ ++ 𝐷))       (𝜑 → (𝐴 ++ 𝐶) = ((𝐵 ++ ⟨“𝑋𝑌”⟩) ++ 𝐷))
 
Theorems2eqd 11310 Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴 = 𝑁)    &   (𝜑𝐵 = 𝑂)       (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩)
 
Theorems3eqd 11311 Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴 = 𝑁)    &   (𝜑𝐵 = 𝑂)    &   (𝜑𝐶 = 𝑃)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩)
 
Theorems4eqd 11312 Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴 = 𝑁)    &   (𝜑𝐵 = 𝑂)    &   (𝜑𝐶 = 𝑃)    &   (𝜑𝐷 = 𝑄)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = ⟨“𝑁𝑂𝑃𝑄”⟩)
 
Theorems5eqd 11313 Equality theorem for a length 5 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴 = 𝑁)    &   (𝜑𝐵 = 𝑂)    &   (𝜑𝐶 = 𝑃)    &   (𝜑𝐷 = 𝑄)    &   (𝜑𝐸 = 𝑅)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅”⟩)
 
Theorems6eqd 11314 Equality theorem for a length 6 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴 = 𝑁)    &   (𝜑𝐵 = 𝑂)    &   (𝜑𝐶 = 𝑃)    &   (𝜑𝐷 = 𝑄)    &   (𝜑𝐸 = 𝑅)    &   (𝜑𝐹 = 𝑆)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆”⟩)
 
Theorems7eqd 11315 Equality theorem for a length 7 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴 = 𝑁)    &   (𝜑𝐵 = 𝑂)    &   (𝜑𝐶 = 𝑃)    &   (𝜑𝐷 = 𝑄)    &   (𝜑𝐸 = 𝑅)    &   (𝜑𝐹 = 𝑆)    &   (𝜑𝐺 = 𝑇)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”⟩)
 
Theorems8eqd 11316 Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴 = 𝑁)    &   (𝜑𝐵 = 𝑂)    &   (𝜑𝐶 = 𝑃)    &   (𝜑𝐷 = 𝑄)    &   (𝜑𝐸 = 𝑅)    &   (𝜑𝐹 = 𝑆)    &   (𝜑𝐺 = 𝑇)    &   (𝜑𝐻 = 𝑈)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”⟩)
 
Theorems3eq2 11317 Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022.)
(𝐵 = 𝐷 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐷𝐶”⟩)
 
Theorems2cld 11318 A doubleton word is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)       (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word 𝑋)
 
Theorems3cld 11319 A length 3 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑋)
 
Theorems4cld 11320 A length 4 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑋)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word 𝑋)
 
Theorems5cld 11321 A length 5 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑𝐸𝑋)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ∈ Word 𝑋)
 
Theorems6cld 11322 A length 6 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑𝐸𝑋)    &   (𝜑𝐹𝑋)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ ∈ Word 𝑋)
 
Theorems7cld 11323 A length 7 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑𝐸𝑋)    &   (𝜑𝐹𝑋)    &   (𝜑𝐺𝑋)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ∈ Word 𝑋)
 
Theorems8cld 11324 A length 8 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑𝐸𝑋)    &   (𝜑𝐹𝑋)    &   (𝜑𝐺𝑋)    &   (𝜑𝐻𝑋)       (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ ∈ Word 𝑋)
 
Theorems2cl 11325 A doubleton word is a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
((𝐴𝑋𝐵𝑋) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑋)
 
Theorems3cl 11326 A length 3 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
((𝐴𝑋𝐵𝑋𝐶𝑋) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑋)
 
Theorems2fv0g 11327 Extract the first symbol from a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
((𝐴𝑉𝐵𝑊) → (⟨“𝐴𝐵”⟩‘0) = 𝐴)
 
Theorems2fv1g 11328 Extract the second symbol from a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
((𝐴𝑉𝐵𝑊) → (⟨“𝐴𝐵”⟩‘1) = 𝐵)
 
Theorems2leng 11329 The length of a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
((𝐴𝑉𝐵𝑊) → (♯‘⟨“𝐴𝐵”⟩) = 2)
 
Theorems2dmg 11330 The domain of a doubleton word is an unordered pair. (Contributed by AV, 9-Jan-2020.)
((𝐴𝑉𝐵𝑊) → dom ⟨“𝐴𝐵”⟩ = {0, 1})
 
Theorems3fv0g 11331 Extract the first symbol from a length 3 string. (Contributed by Mario Carneiro, 13-Jan-2017.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
 
Theorems3fv1g 11332 Extract the second symbol from a length 3 string. (Contributed by Mario Carneiro, 13-Jan-2017.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
 
4.8  Elementary real and complex functions
 
4.8.1  The "shift" operation
 
Syntaxcshi 11333 Extend class notation with function shifter.
class shift
 
Definitiondf-shft 11334* Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of ) and produces a new function on . See shftval 11344 for its value. (Contributed by NM, 20-Jul-2005.)
shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ ℂ ∧ (𝑦𝑥)𝑓𝑧)})
 
Theoremshftlem 11335* Two ways to write a shifted set (𝐵 + 𝐴). (Contributed by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
 
Theoremshftuz 11336* A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ (ℤ𝐵)} = (ℤ‘(𝐵 + 𝐴)))
 
Theoremshftfvalg 11337* The value of the sequence shifter operation is a function on . 𝐴 is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℂ ∧ 𝐹𝑉) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
 
Theoremovshftex 11338 Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V)
 
Theoremshftfibg 11339 Value of a fiber of the relation 𝐹. (Contributed by Jim Kingdon, 15-Aug-2021.)
((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))
 
Theoremshftfval 11340* The value of the sequence shifter operation is a function on . 𝐴 is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
𝐹 ∈ V       (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
 
Theoremshftdm 11341* Domain of a relation shifted by 𝐴. The set on the right is more commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every element of dom 𝐹). (Contributed by Mario Carneiro, 3-Nov-2013.)
𝐹 ∈ V       (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
 
Theoremshftfib 11342 Value of a fiber of the relation 𝐹. (Contributed by Mario Carneiro, 4-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))
 
Theoremshftfn 11343* Functionality and domain of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
𝐹 ∈ V       ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
 
Theoremshftval 11344 Value of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵𝐴)))
 
Theoremshftval2 11345 Value of a sequence shifted by 𝐴𝐵. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹 shift (𝐴𝐵))‘(𝐴 + 𝐶)) = (𝐹‘(𝐵 + 𝐶)))
 
Theoremshftval3 11346 Value of a sequence shifted by 𝐴𝐵. (Contributed by NM, 20-Jul-2005.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴𝐵))‘𝐴) = (𝐹𝐵))
 
Theoremshftval4 11347 Value of a sequence shifted by -𝐴. (Contributed by NM, 18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))
 
Theoremshftval5 11348 Value of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘(𝐵 + 𝐴)) = (𝐹𝐵))
 
Theoremshftf 11349* Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶)
 
Theorem2shfti 11350 Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵)))
 
Theoremshftidt2 11351 Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       (𝐹 shift 0) = (𝐹 ↾ ℂ)
 
Theoremshftidt 11352 Identity law for the shift operation. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       (𝐴 ∈ ℂ → ((𝐹 shift 0)‘𝐴) = (𝐹𝐴))
 
Theoremshftcan1 11353 Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹𝐵))
 
Theoremshftcan2 11354 Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift 𝐴)‘𝐵) = (𝐹𝐵))
 
Theoremshftvalg 11355 Value of a sequence shifted by 𝐴. (Contributed by Scott Fenton, 16-Dec-2017.)
((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵𝐴)))
 
Theoremshftval4g 11356 Value of a sequence shifted by -𝐴. (Contributed by Jim Kingdon, 19-Aug-2021.)
((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))
 
Theoremseq3shft 11357* Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
(𝜑𝐹𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ‘(𝑀𝑁))) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
 
4.8.2  Real and imaginary parts; conjugate
 
Syntaxccj 11358 Extend class notation to include complex conjugate function.
class
 
Syntaxcre 11359 Extend class notation to include real part of a complex number.
class
 
Syntaxcim 11360 Extend class notation to include imaginary part of a complex number.
class
 
Definitiondf-cj 11361* Define the complex conjugate function. See cjcli 11432 for its closure and cjval 11364 for its value. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
∗ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ)))
 
Definitiondf-re 11362 Define a function whose value is the real part of a complex number. See reval 11368 for its value, recli 11430 for its closure, and replim 11378 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2))
 
Definitiondf-im 11363 Define a function whose value is the imaginary part of a complex number. See imval 11369 for its value, imcli 11431 for its closure, and replim 11378 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
 
Theoremcjval 11364* The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
 
Theoremcjth 11365 The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))
 
Theoremcjf 11366 Domain and codomain of the conjugate function. (Contributed by Mario Carneiro, 6-Nov-2013.)
∗:ℂ⟶ℂ
 
Theoremcjcl 11367 The conjugate of a complex number is a complex number (closure law). (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
 
Theoremreval 11368 The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2))
 
Theoremimval 11369 The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))
 
Theoremimre 11370 The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
 
Theoremreim 11371 The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015.)
(𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
 
Theoremrecl 11372 The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
 
Theoremimcl 11373 The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
 
Theoremref 11374 Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
ℜ:ℂ⟶ℝ
 
Theoremimf 11375 Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
ℑ:ℂ⟶ℝ
 
Theoremcrre 11376 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
 
Theoremcrim 11377 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
 
Theoremreplim 11378 Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
(𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
 
Theoremremim 11379 Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
(𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
 
Theoremreim0 11380 The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
(𝐴 ∈ ℝ → (ℑ‘𝐴) = 0)
 
Theoremreim0b 11381 A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.)
(𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
 
Theoremrereb 11382 A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.)
(𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
 
Theoremmulreap 11383 A product with a real multiplier apart from zero is real iff the multiplicand is real. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ))
 
Theoremrere 11384 A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Paul Chapman, 7-Sep-2007.)
(𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴)
 
Theoremcjreb 11385 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴))
 
Theoremrecj 11386 Real part of a complex conjugate. (Contributed by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴))
 
Theoremreneg 11387 Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
 
Theoremreadd 11388 Real part distributes over addition. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)))
 
Theoremresub 11389 Real part distributes over subtraction. (Contributed by NM, 17-Mar-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵)))
 
Theoremremullem 11390 Lemma for remul 11391, immul 11398, and cjmul 11404. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))))
 
Theoremremul 11391 Real part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
 
Theoremremul2 11392 Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵)))
 
Theoremredivap 11393 Real part of a division. Related to remul2 11392. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℜ‘(𝐴 / 𝐵)) = ((ℜ‘𝐴) / 𝐵))
 
Theoremimcj 11394 Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴))
 
Theoremimneg 11395 The imaginary part of a negative number. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
 
Theoremimadd 11396 Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
 
Theoremimsub 11397 Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
 
Theoremimmul 11398 Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
 
Theoremimmul2 11399 Imaginary part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵)))
 
Theoremimdivap 11400 Imaginary part of a division. Related to immul2 11399. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >