Theorem List for Intuitionistic Logic Explorer - 11301-11400 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Definition | df-s7 11301 |
Define the length 7 word constructor. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ++ 〈“𝐺”〉) |
| |
| Definition | df-s8 11302 |
Define the length 8 word constructor. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ++ 〈“𝐻”〉) |
| |
| Theorem | cats1cld 11303 |
Closure of concatenation with a singleton word. (Contributed by Mario
Carneiro, 26-Feb-2016.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word 𝐴)
& ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑇 ∈ Word 𝐴) |
| |
| Theorem | cats1fvn 11304 |
The last symbol of a concatenation with a singleton word.
(Contributed by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝑆 ∈ Word V & ⊢
(♯‘𝑆) =
𝑀
⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑇‘𝑀) = 𝑋) |
| |
| Theorem | cats1fvnd 11305 |
The last symbol of a concatenation with a singleton word.
(Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim
Kingdon, 20-Jan-2026.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word V) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → (♯‘𝑆) = 𝑀) ⇒ ⊢ (𝜑 → (𝑇‘𝑀) = 𝑋) |
| |
| Theorem | cats1fvd 11306 |
A symbol other than the last in a concatenation with a singleton word.
(Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim
Kingdon, 20-Jan-2026.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑆) = 𝑀)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → 𝑋 ∈ 𝑊)
& ⊢ (𝜑 → (𝑆‘𝑁) = 𝑌)
& ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 < 𝑀) ⇒ ⊢ (𝜑 → (𝑇‘𝑁) = 𝑌) |
| |
| Theorem | cats1lend 11307 |
The length of concatenation with a singleton word. (Contributed by
Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon,
19-Jan-2026.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word V) & ⊢ (𝜑 → 𝑋 ∈ 𝑊)
& ⊢ (♯‘𝑆) = 𝑀
& ⊢ (𝑀 + 1) = 𝑁 ⇒ ⊢ (𝜑 → (♯‘𝑇) = 𝑁) |
| |
| Theorem | cats1catd 11308 |
Closure of concatenation with a singleton word. (Contributed by Mario
Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
|
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝐴 ∈ Word V) & ⊢ (𝜑 → 𝑆 ∈ Word V) & ⊢ (𝜑 → 𝑋 ∈ 𝑊)
& ⊢ (𝜑 → 𝐶 = (𝐵 ++ 〈“𝑋”〉)) & ⊢ (𝜑 → 𝐵 = (𝐴 ++ 𝑆)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 ++ 𝑇)) |
| |
| Theorem | cats2catd 11309 |
Closure of concatenation of concatenations with singleton words.
(Contributed by AV, 1-Mar-2021.) (Revised by Jim Kingdon,
19-Jan-2026.)
|
| ⊢ (𝜑 → 𝐵 ∈ Word V) & ⊢ (𝜑 → 𝐷 ∈ Word V) & ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑊)
& ⊢ (𝜑 → 𝐴 = (𝐵 ++ 〈“𝑋”〉)) & ⊢ (𝜑 → 𝐶 = (〈“𝑌”〉 ++ 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 ++ 𝐶) = ((𝐵 ++ 〈“𝑋𝑌”〉) ++ 𝐷)) |
| |
| Theorem | s2eqd 11310 |
Equality theorem for a doubleton word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝑁)
& ⊢ (𝜑 → 𝐵 = 𝑂) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
| |
| Theorem | s3eqd 11311 |
Equality theorem for a length 3 word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝑁)
& ⊢ (𝜑 → 𝐵 = 𝑂)
& ⊢ (𝜑 → 𝐶 = 𝑃) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
| |
| Theorem | s4eqd 11312 |
Equality theorem for a length 4 word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝑁)
& ⊢ (𝜑 → 𝐵 = 𝑂)
& ⊢ (𝜑 → 𝐶 = 𝑃)
& ⊢ (𝜑 → 𝐷 = 𝑄) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 = 〈“𝑁𝑂𝑃𝑄”〉) |
| |
| Theorem | s5eqd 11313 |
Equality theorem for a length 5 word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝑁)
& ⊢ (𝜑 → 𝐵 = 𝑂)
& ⊢ (𝜑 → 𝐶 = 𝑃)
& ⊢ (𝜑 → 𝐷 = 𝑄)
& ⊢ (𝜑 → 𝐸 = 𝑅) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸”〉 = 〈“𝑁𝑂𝑃𝑄𝑅”〉) |
| |
| Theorem | s6eqd 11314 |
Equality theorem for a length 6 word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝑁)
& ⊢ (𝜑 → 𝐵 = 𝑂)
& ⊢ (𝜑 → 𝐶 = 𝑃)
& ⊢ (𝜑 → 𝐷 = 𝑄)
& ⊢ (𝜑 → 𝐸 = 𝑅)
& ⊢ (𝜑 → 𝐹 = 𝑆) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆”〉) |
| |
| Theorem | s7eqd 11315 |
Equality theorem for a length 7 word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝑁)
& ⊢ (𝜑 → 𝐵 = 𝑂)
& ⊢ (𝜑 → 𝐶 = 𝑃)
& ⊢ (𝜑 → 𝐷 = 𝑄)
& ⊢ (𝜑 → 𝐸 = 𝑅)
& ⊢ (𝜑 → 𝐹 = 𝑆)
& ⊢ (𝜑 → 𝐺 = 𝑇) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉) |
| |
| Theorem | s8eqd 11316 |
Equality theorem for a length 8 word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝑁)
& ⊢ (𝜑 → 𝐵 = 𝑂)
& ⊢ (𝜑 → 𝐶 = 𝑃)
& ⊢ (𝜑 → 𝐷 = 𝑄)
& ⊢ (𝜑 → 𝐸 = 𝑅)
& ⊢ (𝜑 → 𝐹 = 𝑆)
& ⊢ (𝜑 → 𝐺 = 𝑇)
& ⊢ (𝜑 → 𝐻 = 𝑈) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉) |
| |
| Theorem | s3eq2 11317 |
Equality theorem for a length 3 word for the second symbol. (Contributed
by AV, 4-Jan-2022.)
|
| ⊢ (𝐵 = 𝐷 → 〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐷𝐶”〉) |
| |
| Theorem | s2cld 11318 |
A doubleton word is a word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑋) |
| |
| Theorem | s3cld 11319 |
A length 3 string is a word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑋) |
| |
| Theorem | s4cld 11320 |
A length 4 string is a word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐷 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word 𝑋) |
| |
| Theorem | s5cld 11321 |
A length 5 string is a word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → 𝐸 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸”〉 ∈ Word 𝑋) |
| |
| Theorem | s6cld 11322 |
A length 6 string is a word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → 𝐸 ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ∈ Word 𝑋) |
| |
| Theorem | s7cld 11323 |
A length 7 string is a word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → 𝐸 ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑋)
& ⊢ (𝜑 → 𝐺 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ∈ Word 𝑋) |
| |
| Theorem | s8cld 11324 |
A length 8 string is a word. (Contributed by Mario Carneiro,
27-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝐵 ∈ 𝑋)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → 𝐸 ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑋)
& ⊢ (𝜑 → 𝐺 ∈ 𝑋)
& ⊢ (𝜑 → 𝐻 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 ∈ Word 𝑋) |
| |
| Theorem | s2cl 11325 |
A doubleton word is a word. (Contributed by Stefan O'Rear, 23-Aug-2015.)
(Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈“𝐴𝐵”〉 ∈ Word 𝑋) |
| |
| Theorem | s3cl 11326 |
A length 3 string is a word. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑋) |
| |
| Theorem | s2fv0g 11327 |
Extract the first symbol from a doubleton word. (Contributed by Stefan
O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈“𝐴𝐵”〉‘0) = 𝐴) |
| |
| Theorem | s2fv1g 11328 |
Extract the second symbol from a doubleton word. (Contributed by Stefan
O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈“𝐴𝐵”〉‘1) = 𝐵) |
| |
| Theorem | s2leng 11329 |
The length of a doubleton word. (Contributed by Stefan O'Rear,
23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (♯‘〈“𝐴𝐵”〉) = 2) |
| |
| Theorem | s2dmg 11330 |
The domain of a doubleton word is an unordered pair. (Contributed by AV,
9-Jan-2020.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → dom 〈“𝐴𝐵”〉 = {0, 1}) |
| |
| Theorem | s3fv0g 11331 |
Extract the first symbol from a length 3 string. (Contributed by Mario
Carneiro, 13-Jan-2017.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
| |
| Theorem | s3fv1g 11332 |
Extract the second symbol from a length 3 string. (Contributed by Mario
Carneiro, 13-Jan-2017.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
| |
| 4.8 Elementary real and complex
functions
|
| |
| 4.8.1 The "shift" operation
|
| |
| Syntax | cshi 11333 |
Extend class notation with function shifter.
|
| class shift |
| |
| Definition | df-shft 11334* |
Define a function shifter. This operation offsets the value argument of
a function (ordinarily on a subset of ℂ)
and produces a new
function on ℂ. See shftval 11344 for its value. (Contributed by NM,
20-Jul-2005.)
|
| ⊢ shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧)}) |
| |
| Theorem | shftlem 11335* |
Two ways to write a shifted set (𝐵 + 𝐴). (Contributed by Mario
Carneiro, 3-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = (𝑦 + 𝐴)}) |
| |
| Theorem | shftuz 11336* |
A shift of the upper integers. (Contributed by Mario Carneiro,
5-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈
(ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) |
| |
| Theorem | shftfvalg 11337* |
The value of the sequence shifter operation is a function on ℂ.
𝐴 is ordinarily an integer.
(Contributed by NM, 20-Jul-2005.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
| |
| Theorem | ovshftex 11338 |
Existence of the result of applying shift. (Contributed by Jim Kingdon,
15-Aug-2021.)
|
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V) |
| |
| Theorem | shftfibg 11339 |
Value of a fiber of the relation 𝐹. (Contributed by Jim Kingdon,
15-Aug-2021.)
|
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) |
| |
| Theorem | shftfval 11340* |
The value of the sequence shifter operation is a function on ℂ.
𝐴 is ordinarily an integer.
(Contributed by NM, 20-Jul-2005.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
| |
| Theorem | shftdm 11341* |
Domain of a relation shifted by 𝐴. The set on the right is more
commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every
element of dom 𝐹). (Contributed by Mario Carneiro,
3-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹}) |
| |
| Theorem | shftfib 11342 |
Value of a fiber of the relation 𝐹. (Contributed by Mario
Carneiro, 4-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) |
| |
| Theorem | shftfn 11343* |
Functionality and domain of a sequence shifted by 𝐴. (Contributed
by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
| |
| Theorem | shftval 11344 |
Value of a sequence shifted by 𝐴. (Contributed by NM,
20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) |
| |
| Theorem | shftval2 11345 |
Value of a sequence shifted by 𝐴 − 𝐵. (Contributed by NM,
20-Jul-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘(𝐴 + 𝐶)) = (𝐹‘(𝐵 + 𝐶))) |
| |
| Theorem | shftval3 11346 |
Value of a sequence shifted by 𝐴 − 𝐵. (Contributed by NM,
20-Jul-2005.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘𝐴) = (𝐹‘𝐵)) |
| |
| Theorem | shftval4 11347 |
Value of a sequence shifted by -𝐴. (Contributed by NM,
18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))) |
| |
| Theorem | shftval5 11348 |
Value of a shifted sequence. (Contributed by NM, 19-Aug-2005.)
(Revised by Mario Carneiro, 5-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘(𝐵 + 𝐴)) = (𝐹‘𝐵)) |
| |
| Theorem | shftf 11349* |
Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.)
(Revised by Mario Carneiro, 5-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) |
| |
| Theorem | 2shfti 11350 |
Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised
by Mario Carneiro, 5-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵))) |
| |
| Theorem | shftidt2 11351 |
Identity law for the shift operation. (Contributed by Mario Carneiro,
5-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) |
| |
| Theorem | shftidt 11352 |
Identity law for the shift operation. (Contributed by NM, 19-Aug-2005.)
(Revised by Mario Carneiro, 5-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → ((𝐹 shift 0)‘𝐴) = (𝐹‘𝐴)) |
| |
| Theorem | shftcan1 11353 |
Cancellation law for the shift operation. (Contributed by NM,
4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹‘𝐵)) |
| |
| Theorem | shftcan2 11354 |
Cancellation law for the shift operation. (Contributed by NM,
4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift 𝐴)‘𝐵) = (𝐹‘𝐵)) |
| |
| Theorem | shftvalg 11355 |
Value of a sequence shifted by 𝐴. (Contributed by Scott Fenton,
16-Dec-2017.)
|
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) |
| |
| Theorem | shftval4g 11356 |
Value of a sequence shifted by -𝐴. (Contributed by Jim Kingdon,
19-Aug-2021.)
|
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))) |
| |
| Theorem | seq3shft 11357* |
Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.)
(Revised by Jim Kingdon, 17-Oct-2022.)
|
| ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 − 𝑁))) → (𝐹‘𝑥) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁)) |
| |
| 4.8.2 Real and imaginary parts;
conjugate
|
| |
| Syntax | ccj 11358 |
Extend class notation to include complex conjugate function.
|
| class ∗ |
| |
| Syntax | cre 11359 |
Extend class notation to include real part of a complex number.
|
| class ℜ |
| |
| Syntax | cim 11360 |
Extend class notation to include imaginary part of a complex number.
|
| class ℑ |
| |
| Definition | df-cj 11361* |
Define the complex conjugate function. See cjcli 11432 for its closure and
cjval 11364 for its value. (Contributed by NM,
9-May-1999.) (Revised by
Mario Carneiro, 6-Nov-2013.)
|
| ⊢ ∗ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) |
| |
| Definition | df-re 11362 |
Define a function whose value is the real part of a complex number. See
reval 11368 for its value, recli 11430 for its closure, and replim 11378 for its use
in decomposing a complex number. (Contributed by NM, 9-May-1999.)
|
| ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) |
| |
| Definition | df-im 11363 |
Define a function whose value is the imaginary part of a complex number.
See imval 11369 for its value, imcli 11431 for its closure, and replim 11378 for its
use in decomposing a complex number. (Contributed by NM,
9-May-1999.)
|
| ⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) |
| |
| Theorem | cjval 11364* |
The value of the conjugate of a complex number. (Contributed by Mario
Carneiro, 6-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ →
(∗‘𝐴) =
(℩𝑥 ∈
ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i
· (𝐴 − 𝑥)) ∈
ℝ))) |
| |
| Theorem | cjth 11365 |
The defining property of the complex conjugate. (Contributed by Mario
Carneiro, 6-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈
ℝ)) |
| |
| Theorem | cjf 11366 |
Domain and codomain of the conjugate function. (Contributed by Mario
Carneiro, 6-Nov-2013.)
|
| ⊢
∗:ℂ⟶ℂ |
| |
| Theorem | cjcl 11367 |
The conjugate of a complex number is a complex number (closure law).
(Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro,
6-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ →
(∗‘𝐴) ∈
ℂ) |
| |
| Theorem | reval 11368 |
The value of the real part of a complex number. (Contributed by NM,
9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) |
| |
| Theorem | imval 11369 |
The value of the imaginary part of a complex number. (Contributed by
NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i))) |
| |
| Theorem | imre 11370 |
The imaginary part of a complex number in terms of the real part
function. (Contributed by NM, 12-May-2005.) (Revised by Mario
Carneiro, 6-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i ·
𝐴))) |
| |
| Theorem | reim 11371 |
The real part of a complex number in terms of the imaginary part
function. (Contributed by Mario Carneiro, 31-Mar-2015.)
|
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i ·
𝐴))) |
| |
| Theorem | recl 11372 |
The real part of a complex number is real. (Contributed by NM,
9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈
ℝ) |
| |
| Theorem | imcl 11373 |
The imaginary part of a complex number is real. (Contributed by NM,
9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈
ℝ) |
| |
| Theorem | ref 11374 |
Domain and codomain of the real part function. (Contributed by Paul
Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
|
| ⊢
ℜ:ℂ⟶ℝ |
| |
| Theorem | imf 11375 |
Domain and codomain of the imaginary part function. (Contributed by
Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
|
| ⊢
ℑ:ℂ⟶ℝ |
| |
| Theorem | crre 11376 |
The real part of a complex number representation. Definition 10-3.1 of
[Gleason] p. 132. (Contributed by NM,
12-May-2005.) (Revised by Mario
Carneiro, 7-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(ℜ‘(𝐴 + (i
· 𝐵))) = 𝐴) |
| |
| Theorem | crim 11377 |
The real part of a complex number representation. Definition 10-3.1 of
[Gleason] p. 132. (Contributed by NM,
12-May-2005.) (Revised by Mario
Carneiro, 7-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(ℑ‘(𝐴 + (i
· 𝐵))) = 𝐵) |
| |
| Theorem | replim 11378 |
Reconstruct a complex number from its real and imaginary parts.
(Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro,
7-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
| |
| Theorem | remim 11379 |
Value of the conjugate of a complex number. The value is the real part
minus i times the imaginary part. Definition
10-3.2 of [Gleason]
p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro,
7-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ →
(∗‘𝐴) =
((ℜ‘𝐴) −
(i · (ℑ‘𝐴)))) |
| |
| Theorem | reim0 11380 |
The imaginary part of a real number is 0. (Contributed by NM,
18-Mar-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) |
| |
| Theorem | reim0b 11381 |
A number is real iff its imaginary part is 0. (Contributed by NM,
26-Sep-2005.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) |
| |
| Theorem | rereb 11382 |
A number is real iff it equals its real part. Proposition 10-3.4(f) of
[Gleason] p. 133. (Contributed by NM,
20-Aug-2008.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴)) |
| |
| Theorem | mulreap 11383 |
A product with a real multiplier apart from zero is real iff the
multiplicand is real. (Contributed by Jim Kingdon, 14-Jun-2020.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ)) |
| |
| Theorem | rere 11384 |
A real number equals its real part. One direction of Proposition
10-3.4(f) of [Gleason] p. 133.
(Contributed by Paul Chapman,
7-Sep-2007.)
|
| ⊢ (𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴) |
| |
| Theorem | cjreb 11385 |
A number is real iff it equals its complex conjugate. Proposition
10-3.4(f) of [Gleason] p. 133.
(Contributed by NM, 2-Jul-2005.) (Revised
by Mario Carneiro, 14-Jul-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔
(∗‘𝐴) = 𝐴)) |
| |
| Theorem | recj 11386 |
Real part of a complex conjugate. (Contributed by Mario Carneiro,
14-Jul-2014.)
|
| ⊢ (𝐴 ∈ ℂ →
(ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) |
| |
| Theorem | reneg 11387 |
Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by
Mario Carneiro, 14-Jul-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴)) |
| |
| Theorem | readd 11388 |
Real part distributes over addition. (Contributed by NM, 17-Mar-2005.)
(Revised by Mario Carneiro, 14-Jul-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) |
| |
| Theorem | resub 11389 |
Real part distributes over subtraction. (Contributed by NM,
17-Mar-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(ℜ‘(𝐴 −
𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) |
| |
| Theorem | remullem 11390 |
Lemma for remul 11391, immul 11398, and cjmul 11404. (Contributed by NM,
28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((ℜ‘(𝐴 ·
𝐵)) =
(((ℜ‘𝐴)
· (ℜ‘𝐵))
− ((ℑ‘𝐴)
· (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))) |
| |
| Theorem | remul 11391 |
Real part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by
Mario Carneiro, 14-Jul-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(ℜ‘(𝐴 ·
𝐵)) =
(((ℜ‘𝐴)
· (ℜ‘𝐵))
− ((ℑ‘𝐴)
· (ℑ‘𝐵)))) |
| |
| Theorem | remul2 11392 |
Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) →
(ℜ‘(𝐴 ·
𝐵)) = (𝐴 · (ℜ‘𝐵))) |
| |
| Theorem | redivap 11393 |
Real part of a division. Related to remul2 11392. (Contributed by Jim
Kingdon, 14-Jun-2020.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℜ‘(𝐴 / 𝐵)) = ((ℜ‘𝐴) / 𝐵)) |
| |
| Theorem | imcj 11394 |
Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005.)
(Revised by Mario Carneiro, 14-Jul-2014.)
|
| ⊢ (𝐴 ∈ ℂ →
(ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)) |
| |
| Theorem | imneg 11395 |
The imaginary part of a negative number. (Contributed by NM,
18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
|
| ⊢ (𝐴 ∈ ℂ →
(ℑ‘-𝐴) =
-(ℑ‘𝐴)) |
| |
| Theorem | imadd 11396 |
Imaginary part distributes over addition. (Contributed by NM,
18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) |
| |
| Theorem | imsub 11397 |
Imaginary part distributes over subtraction. (Contributed by NM,
18-Mar-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(ℑ‘(𝐴 −
𝐵)) =
((ℑ‘𝐴) −
(ℑ‘𝐵))) |
| |
| Theorem | immul 11398 |
Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) (Revised
by Mario Carneiro, 14-Jul-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(ℑ‘(𝐴 ·
𝐵)) =
(((ℜ‘𝐴)
· (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) |
| |
| Theorem | immul2 11399 |
Imaginary part of a product. (Contributed by Mario Carneiro,
2-Aug-2014.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) →
(ℑ‘(𝐴 ·
𝐵)) = (𝐴 · (ℑ‘𝐵))) |
| |
| Theorem | imdivap 11400 |
Imaginary part of a division. Related to immul2 11399. (Contributed by Jim
Kingdon, 14-Jun-2020.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵)) |