HomeHome Intuitionistic Logic Explorer
Theorem List (p. 114 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11301-11400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcvgratz 11301* Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))       (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
 
Theoremcvgratgt0 11302* Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms beyond some index 𝐵, then the infinite sum of the terms of 𝐹 converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
𝑍 = (ℤ𝑀)    &   𝑊 = (ℤ𝑁)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))       (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
 
4.8.9  Mertens' theorem
 
Theoremmertenslemub 11303* Lemma for mertensabs 11306. An upper bound for 𝑇. (Contributed by Jim Kingdon, 3-Dec-2022.)
((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)    &   (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )    &   𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}    &   (𝜑𝑋𝑇)    &   (𝜑𝑆 ∈ ℕ)       (𝜑𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
 
Theoremmertenslemi1 11304* Lemma for mertensabs 11306. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)    &   ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))    &   ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))    &   (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )    &   (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )    &   (𝜑𝐸 ∈ ℝ+)    &   𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}    &   (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))    &   (𝜑𝑃 ∈ ℝ)    &   (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))))    &   (𝜑 → 0 ≤ 𝑃)    &   (𝜑 → ∀𝑤𝑇 𝑤𝑃)       (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
 
Theoremmertenslem2 11305* Lemma for mertensabs 11306. (Contributed by Mario Carneiro, 28-Apr-2014.)
((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)    &   ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))    &   ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))    &   (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )    &   (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )    &   (𝜑𝐸 ∈ ℝ+)    &   𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}    &   (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))       (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
 
Theoremmertensabs 11306* Mertens' theorem. If 𝐴(𝑗) is an absolutely convergent series and 𝐵(𝑘) is convergent, then 𝑗 ∈ ℕ0𝐴(𝑗) · Σ𝑘 ∈ ℕ0𝐵(𝑘)) = Σ𝑘 ∈ ℕ0Σ𝑗 ∈ (0...𝑘)(𝐴(𝑗) · 𝐵(𝑘𝑗)) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 8-Dec-2022.)
((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)    &   ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))    &   ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))    &   (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )    &   (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )    &   (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )       (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵))
 
4.8.10  Finite and infinite products
 
4.8.10.1  Product sequences
 
Theoremprodf 11307* An infinite product of complex terms is a function from an upper set of integers to . (Contributed by Scott Fenton, 4-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)       (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
 
Theoremclim2prod 11308* The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ 𝐴)       (𝜑 → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘𝑁) · 𝐴))
 
Theoremclim2divap 11309* The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴)    &   (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)       (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)))
 
Theoremprod3fmul 11310* The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))       (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , 𝐺)‘𝑁)))
 
Theoremprodf1 11311 The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017.)
𝑍 = (ℤ𝑀)       (𝑁𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1)
 
Theoremprodf1f 11312 A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}))
 
Theoremprodfclim1 11313 The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) ⇝ 1)
 
Theoremprodfap0 11314* The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)       (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)
 
Theoremprodfrecap 11315* The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) = (1 / (𝐹𝑘)))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)       (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))
 
Theoremprodfdivap 11316* The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))       (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
 
4.8.10.2  Non-trivial convergence
 
Theoremntrivcvgap 11317* A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)       (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
 
Theoremntrivcvgap0 11318* A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)    &   (𝜑𝑋 # 0)       (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
 
4.8.10.3  Complex products
 
Syntaxcprod 11319 Extend class notation to include complex products.
class 𝑘𝐴 𝐵
 
Definitiondf-proddc 11320* Define the product of a series with an index set of integers 𝐴. This definition takes most of the aspects of df-sumdc 11123 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 21-Mar-2024.)
𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
 
Theoremprodeq1f 11321 Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
𝑘𝐴    &   𝑘𝐵       (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
 
Theoremprodeq1 11322* Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
(𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
 
Theoremnfcprod1 11323* Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝑘𝐴       𝑘𝑘𝐴 𝐵
 
Theoremnfcprod 11324* Bound-variable hypothesis builder for product: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in 𝑘𝐴𝐵. (Contributed by Scott Fenton, 1-Dec-2017.)
𝑥𝐴    &   𝑥𝐵       𝑥𝑘𝐴 𝐵
 
Theoremprodeq2w 11325* Equality theorem for product, when the class expressions 𝐵 and 𝐶 are equal everywhere. Proved using only Extensionality. (Contributed by Scott Fenton, 4-Dec-2017.)
(∀𝑘 𝐵 = 𝐶 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theoremprodeq2 11326* Equality theorem for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(∀𝑘𝐴 𝐵 = 𝐶 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theoremcbvprod 11327* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝑗 = 𝑘𝐵 = 𝐶)    &   𝑘𝐴    &   𝑗𝐴    &   𝑘𝐵    &   𝑗𝐶       𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
 
Theoremcbvprodv 11328* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝑗 = 𝑘𝐵 = 𝐶)       𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
 
Theoremcbvprodi 11329* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝑘𝐵    &   𝑗𝐶    &   (𝑗 = 𝑘𝐵 = 𝐶)       𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
 
Theoremprodeq1i 11330* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐴 = 𝐵       𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶
 
Theoremprodeq2i 11331* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝑘𝐴𝐵 = 𝐶)       𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶
 
Theoremprodeq12i 11332* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐴 = 𝐵    &   (𝑘𝐴𝐶 = 𝐷)       𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐷
 
Theoremprodeq1d 11333* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑𝐴 = 𝐵)       (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
 
Theoremprodeq2d 11334* Equality deduction for product. Note that unlike prodeq2dv 11335, 𝑘 may occur in 𝜑. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)       (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theoremprodeq2dv 11335* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
((𝜑𝑘𝐴) → 𝐵 = 𝐶)       (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theoremprodeq2sdv 11336* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑𝐵 = 𝐶)       (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theorem2cprodeq2dv 11337* Equality deduction for double product. (Contributed by Scott Fenton, 4-Dec-2017.)
((𝜑𝑗𝐴𝑘𝐵) → 𝐶 = 𝐷)       (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑗𝐴𝑘𝐵 𝐷)
 
Theoremprodeq12dv 11338* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 = 𝐷)       (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐷)
 
Theoremprodeq12rdv 11339* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑘𝐵) → 𝐶 = 𝐷)       (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐷)
 
Theoremprodrbdclem 11340* Lemma for prodrbdc 11343. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))       ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
 
Theoremfproddccvg 11341* The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (𝑀...𝑁))       (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘𝑁))
 
Theoremprodrbdclem2 11342* Lemma for prodrbdc 11343. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (ℤ𝑁))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)       ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
 
Theoremprodrbdc 11343* Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (ℤ𝑁))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)       (𝜑 → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
 
Theoremprodmodclem3 11344* Lemma for prodmodc 11347. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))    &   𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1))    &   (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))    &   (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)    &   (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)       (𝜑 → (seq1( · , 𝐺)‘𝑀) = (seq1( · , 𝐻)‘𝑁))
 
Theoremprodmodclem2a 11345* Lemma for prodmodc 11347. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))    &   𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)    &   (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))       (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑁))
 
Theoremprodmodclem2 11346* Lemma for prodmodc 11347. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))       ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
 
Theoremprodmodc 11347* A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017.) (Modified by Jim Kingdon, 14-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))       (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))))
 
4.9  Elementary trigonometry
 
4.9.1  The exponential, sine, and cosine functions
 
Syntaxce 11348 Extend class notation to include the exponential function.
class exp
 
Syntaxceu 11349 Extend class notation to include Euler's constant e = 2.71828....
class e
 
Syntaxcsin 11350 Extend class notation to include the sine function.
class sin
 
Syntaxccos 11351 Extend class notation to include the cosine function.
class cos
 
Syntaxctan 11352 Extend class notation to include the tangent function.
class tan
 
Syntaxcpi 11353 Extend class notation to include the constant pi, π = 3.14159....
class π
 
Definitiondf-ef 11354* Define the exponential function. Its value at the complex number 𝐴 is (exp‘𝐴) and is called the "exponential of 𝐴"; see efval 11367. (Contributed by NM, 14-Mar-2005.)
exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)))
 
Definitiondf-e 11355 Define Euler's constant e = 2.71828.... (Contributed by NM, 14-Mar-2005.)
e = (exp‘1)
 
Definitiondf-sin 11356 Define the sine function. (Contributed by NM, 14-Mar-2005.)
sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
 
Definitiondf-cos 11357 Define the cosine function. (Contributed by NM, 14-Mar-2005.)
cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
 
Definitiondf-tan 11358 Define the tangent function. We define it this way for cmpt 3989, which requires the form (𝑥𝐴𝐵). (Contributed by Mario Carneiro, 14-Mar-2014.)
tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
 
Definitiondf-pi 11359 Define the constant pi, π = 3.14159..., which is the smallest positive number whose sine is zero. Definition of π in [Gleason] p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV, 14-Sep-2020.)
π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
 
Theoremeftcl 11360 Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) / (!‘𝐾)) ∈ ℂ)
 
Theoremreeftcl 11361 The terms of the series expansion of the exponential function at a real number are real. (Contributed by Paul Chapman, 15-Jan-2008.)
((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) / (!‘𝐾)) ∈ ℝ)
 
Theoremeftabs 11362 The absolute value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 23-Nov-2007.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (abs‘((𝐴𝐾) / (!‘𝐾))) = (((abs‘𝐴)↑𝐾) / (!‘𝐾)))
 
Theoremeftvalcn 11363* The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 8-Dec-2022.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹𝑁) = ((𝐴𝑁) / (!‘𝑁)))
 
Theoremefcllemp 11364* Lemma for efcl 11370. The series that defines the exponential function converges. The ratio test cvgratgt0 11302 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐾 ∈ ℕ)    &   (𝜑 → (2 · (abs‘𝐴)) < 𝐾)       (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
 
Theoremefcllem 11365* Lemma for efcl 11370. The series that defines the exponential function converges. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
 
Theoremef0lem 11366* The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
 
Theoremefval 11367* Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
(𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
 
Theoremesum 11368 Value of Euler's constant e = 2.71828.... (Contributed by Steve Rodriguez, 5-Mar-2006.)
e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
 
Theoremeff 11369 Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
exp:ℂ⟶ℂ
 
Theoremefcl 11370 Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
(𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
 
Theoremefval2 11371* Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
 
Theoremefcvg 11372* The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       (𝐴 ∈ ℂ → seq0( + , 𝐹) ⇝ (exp‘𝐴))
 
Theoremefcvgfsum 11373* Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)))       (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴))
 
Theoremreefcl 11374 The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
(𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ)
 
Theoremreefcld 11375 The exponential function is real if its argument is real. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (exp‘𝐴) ∈ ℝ)
 
Theoremere 11376 Euler's constant e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.)
e ∈ ℝ
 
Theoremege2le3 11377 Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))    &   𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))       (2 ≤ e ∧ e ≤ 3)
 
Theoremef0 11378 Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
(exp‘0) = 1
 
Theoremefcj 11379 The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
(𝐴 ∈ ℂ → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴)))
 
Theoremefaddlem 11380* Lemma for efadd 11381 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))    &   𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵𝑛) / (!‘𝑛)))    &   𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛)))    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
 
Theoremefadd 11381 Sum of exponents law for exponential function. (Contributed by NM, 10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
 
Theoremefcan 11382 Cancellation law for exponential function. Equation 27 of [Rudin] p. 164. (Contributed by NM, 13-Jan-2006.)
(𝐴 ∈ ℂ → ((exp‘𝐴) · (exp‘-𝐴)) = 1)
 
Theoremefap0 11383 The exponential of a complex number is apart from zero. (Contributed by Jim Kingdon, 12-Dec-2022.)
(𝐴 ∈ ℂ → (exp‘𝐴) # 0)
 
Theoremefne0 11384 The exponential of a complex number is nonzero. Corollary 15-4.3 of [Gleason] p. 309. The same result also holds with not equal replaced by apart, as seen at efap0 11383 (which will be more useful in most contexts). (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.)
(𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0)
 
Theoremefneg 11385 The exponential of the opposite is the inverse of the exponential. (Contributed by Mario Carneiro, 10-May-2014.)
(𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴)))
 
Theoremeff2 11386 The exponential function maps the complex numbers to the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.)
exp:ℂ⟶(ℂ ∖ {0})
 
Theoremefsub 11387 Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴𝐵)) = ((exp‘𝐴) / (exp‘𝐵)))
 
Theoremefexp 11388 The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁))
 
Theoremefzval 11389 Value of the exponential function for integers. Special case of efval 11367. Equation 30 of [Rudin] p. 164. (Contributed by Steve Rodriguez, 15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
(𝑁 ∈ ℤ → (exp‘𝑁) = (e↑𝑁))
 
Theoremefgt0 11390 The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
(𝐴 ∈ ℝ → 0 < (exp‘𝐴))
 
Theoremrpefcl 11391 The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 10-Nov-2013.)
(𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ+)
 
Theoremrpefcld 11392 The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (exp‘𝐴) ∈ ℝ+)
 
Theoremeftlcvg 11393* The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
 
Theoremeftlcl 11394* Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
 
Theoremreeftlcl 11395* Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℝ)
 
Theoremeftlub 11396* An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))    &   𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))    &   𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑 → (abs‘𝐴) ≤ 1)       (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
 
Theoremefsep 11397* Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))    &   𝑁 = (𝑀 + 1)    &   𝑀 ∈ ℕ0    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)))    &   (𝜑 → (𝐵 + ((𝐴𝑀) / (!‘𝑀))) = 𝐷)       (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘)))
 
Theoremeffsumlt 11398* The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴))
 
Theoremeft0val 11399 The value of the first term of the series expansion of the exponential function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
(𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
 
Theoremef4p 11400* Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >