Theorem List for Intuitionistic Logic Explorer - 11301-11400 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | sqrtthi 11301 |
Square root theorem. Theorem I.35 of [Apostol]
p. 29. (Contributed by
NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴) · (√‘𝐴)) = 𝐴) |
| |
| Theorem | sqrtcli 11302 |
The square root of a nonnegative real is a real. (Contributed by NM,
26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → (√‘𝐴) ∈ ℝ) |
| |
| Theorem | sqrtgt0i 11303 |
The square root of a positive real is positive. (Contributed by NM,
26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 < 𝐴 → 0 < (√‘𝐴)) |
| |
| Theorem | sqrtmsqi 11304 |
Square root of square. (Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴 · 𝐴)) = 𝐴) |
| |
| Theorem | sqrtsqi 11305 |
Square root of square. (Contributed by NM, 11-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴↑2)) = 𝐴) |
| |
| Theorem | sqsqrti 11306 |
Square of square root. (Contributed by NM, 11-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴)↑2) = 𝐴) |
| |
| Theorem | sqrtge0i 11307 |
The square root of a nonnegative real is nonnegative. (Contributed by
NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → 0 ≤ (√‘𝐴)) |
| |
| Theorem | absidi 11308 |
A nonnegative number is its own absolute value. (Contributed by NM,
2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → (abs‘𝐴) = 𝐴) |
| |
| Theorem | absnidi 11309 |
A negative number is the negative of its own absolute value.
(Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (𝐴 ≤ 0 → (abs‘𝐴) = -𝐴) |
| |
| Theorem | leabsi 11310 |
A real number is less than or equal to its absolute value. (Contributed
by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ 𝐴 ≤ (abs‘𝐴) |
| |
| Theorem | absrei 11311 |
Absolute value of a real number. (Contributed by NM, 3-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (abs‘𝐴) = (√‘(𝐴↑2)) |
| |
| Theorem | sqrtpclii 11312 |
The square root of a positive real is a real. (Contributed by Mario
Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ (√‘𝐴) ∈
ℝ |
| |
| Theorem | sqrtgt0ii 11313 |
The square root of a positive real is positive. (Contributed by NM,
26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 0 < (√‘𝐴) |
| |
| Theorem | sqrt11i 11314 |
The square root function is one-to-one. (Contributed by NM,
27-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | sqrtmuli 11315 |
Square root distributes over multiplication. (Contributed by NM,
30-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) |
| |
| Theorem | sqrtmulii 11316 |
Square root distributes over multiplication. (Contributed by NM,
30-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 ≤ 𝐴 & ⊢ 0 ≤ 𝐵 ⇒ ⊢ (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)) |
| |
| Theorem | sqrtmsq2i 11317 |
Relationship between square root and squares. (Contributed by NM,
31-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐵))) |
| |
| Theorem | sqrtlei 11318 |
Square root is monotonic. (Contributed by NM, 3-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) |
| |
| Theorem | sqrtlti 11319 |
Square root is strictly monotonic. (Contributed by Roy F. Longton,
8-Aug-2005.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) |
| |
| Theorem | abslti 11320 |
Absolute value and 'less than' relation. (Contributed by NM,
6-Apr-2005.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵)) |
| |
| Theorem | abslei 11321 |
Absolute value and 'less than or equal to' relation. (Contributed by
NM, 6-Apr-2005.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) |
| |
| Theorem | absvalsqi 11322 |
Square of value of absolute value function. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)) |
| |
| Theorem | absvalsq2i 11323 |
Square of value of absolute value function. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2)) |
| |
| Theorem | abscli 11324 |
Real closure of absolute value. (Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (abs‘𝐴) ∈ ℝ |
| |
| Theorem | absge0i 11325 |
Absolute value is nonnegative. (Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ 0 ≤ (abs‘𝐴) |
| |
| Theorem | absval2i 11326 |
Value of absolute value function. Definition 10.36 of [Gleason] p. 133.
(Contributed by NM, 2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2))) |
| |
| Theorem | abs00i 11327 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by NM,
28-Jul-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ ((abs‘𝐴) = 0 ↔ 𝐴 = 0) |
| |
| Theorem | absgt0api 11328 |
The absolute value of a nonzero number is positive. Remark in [Apostol]
p. 363. (Contributed by NM, 1-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 # 0 ↔ 0 < (abs‘𝐴)) |
| |
| Theorem | absnegi 11329 |
Absolute value of negative. (Contributed by NM, 2-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (abs‘-𝐴) = (abs‘𝐴) |
| |
| Theorem | abscji 11330 |
The absolute value of a number and its conjugate are the same.
Proposition 10-3.7(b) of [Gleason] p.
133. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢
(abs‘(∗‘𝐴)) = (abs‘𝐴) |
| |
| Theorem | releabsi 11331 |
The real part of a number is less than or equal to its absolute value.
Proposition 10-3.7(d) of [Gleason] p.
133. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (ℜ‘𝐴) ≤ (abs‘𝐴) |
| |
| Theorem | abssubi 11332 |
Swapping order of subtraction doesn't change the absolute value.
Example of [Apostol] p. 363.
(Contributed by NM, 1-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴)) |
| |
| Theorem | absmuli 11333 |
Absolute value distributes over multiplication. Proposition 10-3.7(f)
of [Gleason] p. 133. (Contributed by
NM, 1-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)) |
| |
| Theorem | sqabsaddi 11334 |
Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason]
p. 133. (Contributed by NM, 2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 ·
(ℜ‘(𝐴 ·
(∗‘𝐵))))) |
| |
| Theorem | sqabssubi 11335 |
Square of absolute value of difference. (Contributed by Steve
Rodriguez, 20-Jan-2007.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 ·
(ℜ‘(𝐴 ·
(∗‘𝐵))))) |
| |
| Theorem | absdivapzi 11336 |
Absolute value distributes over division. (Contributed by Jim Kingdon,
13-Aug-2021.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
| |
| Theorem | abstrii 11337 |
Triangle inequality for absolute value. Proposition 10-3.7(h) of
[Gleason] p. 133. This is Metamath 100
proof #91. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)) |
| |
| Theorem | abs3difi 11338 |
Absolute value of differences around common element. (Contributed by
NM, 2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) |
| |
| Theorem | abs3lemi 11339 |
Lemma involving absolute value of differences. (Contributed by NM,
2-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℝ ⇒ ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷) |
| |
| Theorem | rpsqrtcld 11340 |
The square root of a positive real is positive. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈
ℝ+) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈
ℝ+) |
| |
| Theorem | sqrtgt0d 11341 |
The square root of a positive real is positive. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈
ℝ+) ⇒ ⊢ (𝜑 → 0 < (√‘𝐴)) |
| |
| Theorem | absnidd 11342 |
A negative number is the negative of its own absolute value.
(Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) = -𝐴) |
| |
| Theorem | leabsd 11343 |
A real number is less than or equal to its absolute value. (Contributed
by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → 𝐴 ≤ (abs‘𝐴)) |
| |
| Theorem | absred 11344 |
Absolute value of a real number. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (abs‘𝐴) = (√‘(𝐴↑2))) |
| |
| Theorem | resqrtcld 11345 |
The square root of a nonnegative real is a real. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) |
| |
| Theorem | sqrtmsqd 11346 |
Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘(𝐴 · 𝐴)) = 𝐴) |
| |
| Theorem | sqrtsqd 11347 |
Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘(𝐴↑2)) = 𝐴) |
| |
| Theorem | sqrtge0d 11348 |
The square root of a nonnegative real is nonnegative. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ (√‘𝐴)) |
| |
| Theorem | absidd 11349 |
A nonnegative number is its own absolute value. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (abs‘𝐴) = 𝐴) |
| |
| Theorem | sqrtdivd 11350 |
Square root distributes over division. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈
ℝ+) ⇒ ⊢ (𝜑 → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) |
| |
| Theorem | sqrtmuld 11351 |
Square root distributes over multiplication. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) |
| |
| Theorem | sqrtsq2d 11352 |
Relationship between square root and squares. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵↑2))) |
| |
| Theorem | sqrtled 11353 |
Square root is monotonic. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) |
| |
| Theorem | sqrtltd 11354 |
Square root is strictly monotonic. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) |
| |
| Theorem | sqr11d 11355 |
The square root function is one-to-one. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵)
& ⊢ (𝜑 → (√‘𝐴) = (√‘𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | absltd 11356 |
Absolute value and 'less than' relation. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) |
| |
| Theorem | absled 11357 |
Absolute value and 'less than or equal to' relation. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
| |
| Theorem | abssubge0d 11358 |
Absolute value of a nonnegative difference. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (𝐵 − 𝐴)) |
| |
| Theorem | abssuble0d 11359 |
Absolute value of a nonpositive difference. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) |
| |
| Theorem | absdifltd 11360 |
The absolute value of a difference and 'less than' relation.
(Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) < 𝐶 ↔ ((𝐵 − 𝐶) < 𝐴 ∧ 𝐴 < (𝐵 + 𝐶)))) |
| |
| Theorem | absdifled 11361 |
The absolute value of a difference and 'less than or equal to' relation.
(Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) ≤ 𝐶 ↔ ((𝐵 − 𝐶) ≤ 𝐴 ∧ 𝐴 ≤ (𝐵 + 𝐶)))) |
| |
| Theorem | icodiamlt 11362 |
Two elements in a half-open interval have separation strictly less than
the difference between the endpoints. (Contributed by Stefan O'Rear,
12-Sep-2014.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶 − 𝐷)) < (𝐵 − 𝐴)) |
| |
| Theorem | abscld 11363 |
Real closure of absolute value. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
| |
| Theorem | absvalsqd 11364 |
Square of value of absolute value function. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) |
| |
| Theorem | absvalsq2d 11365 |
Square of value of absolute value function. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2))) |
| |
| Theorem | absge0d 11366 |
Absolute value is nonnegative. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → 0 ≤ (abs‘𝐴)) |
| |
| Theorem | absval2d 11367 |
Value of absolute value function. Definition 10.36 of [Gleason] p. 133.
(Contributed by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2)))) |
| |
| Theorem | abs00d 11368 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) = 0)
⇒ ⊢ (𝜑 → 𝐴 = 0) |
| |
| Theorem | absne0d 11369 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) ≠ 0) |
| |
| Theorem | absrpclapd 11370 |
The absolute value of a complex number apart from zero is a positive
real. (Contributed by Jim Kingdon, 13-Aug-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) ∈
ℝ+) |
| |
| Theorem | absnegd 11371 |
Absolute value of negative. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘-𝐴) = (abs‘𝐴)) |
| |
| Theorem | abscjd 11372 |
The absolute value of a number and its conjugate are the same.
Proposition 10-3.7(b) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(∗‘𝐴)) = (abs‘𝐴)) |
| |
| Theorem | releabsd 11373 |
The real part of a number is less than or equal to its absolute value.
Proposition 10-3.7(d) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℜ‘𝐴) ≤ (abs‘𝐴)) |
| |
| Theorem | absexpd 11374 |
Absolute value of positive integer exponentiation. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
| |
| Theorem | abssubd 11375 |
Swapping order of subtraction doesn't change the absolute value.
Example of [Apostol] p. 363.
(Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
| |
| Theorem | absmuld 11376 |
Absolute value distributes over multiplication. Proposition 10-3.7(f)
of [Gleason] p. 133. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵))) |
| |
| Theorem | absdivapd 11377 |
Absolute value distributes over division. (Contributed by Jim
Kingdon, 13-Aug-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
| |
| Theorem | abstrid 11378 |
Triangle inequality for absolute value. Proposition 10-3.7(h) of
[Gleason] p. 133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) |
| |
| Theorem | abs2difd 11379 |
Difference of absolute values. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
| |
| Theorem | abs2dif2d 11380 |
Difference of absolute values. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) |
| |
| Theorem | abs2difabsd 11381 |
Absolute value of difference of absolute values. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
| |
| Theorem | abs3difd 11382 |
Absolute value of differences around common element. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵)))) |
| |
| Theorem | abs3lemd 11383 |
Lemma involving absolute value of differences. (Contributed by Mario
Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < (𝐷 / 2)) & ⊢ (𝜑 → (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) < 𝐷) |
| |
| Theorem | qdenre 11384* |
The rational numbers are dense in ℝ: any real
number can be
approximated with arbitrary precision by a rational number. For order
theoretic density, see qbtwnre 10363. (Contributed by BJ, 15-Oct-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) →
∃𝑥 ∈ ℚ
(abs‘(𝑥 −
𝐴)) < 𝐵) |
| |
| 4.8.5 The maximum of two real
numbers
|
| |
| Theorem | maxcom 11385 |
The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10.
(Contributed by Jim Kingdon, 21-Dec-2021.)
|
| ⊢ sup({𝐴, 𝐵}, ℝ, < ) = sup({𝐵, 𝐴}, ℝ, < ) |
| |
| Theorem | maxabsle 11386 |
An upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon,
20-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) |
| |
| Theorem | maxleim 11387 |
Value of maximum when we know which number is larger. (Contributed by
Jim Kingdon, 21-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → sup({𝐴, 𝐵}, ℝ, < ) = 𝐵)) |
| |
| Theorem | maxabslemab 11388 |
Lemma for maxabs 11391. A variation of maxleim 11387- that is, if we know
which of two real numbers is larger, we know the maximum of the two.
(Contributed by Jim Kingdon, 21-Dec-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) = 𝐵) |
| |
| Theorem | maxabslemlub 11389 |
Lemma for maxabs 11391. A least upper bound for {𝐴, 𝐵}.
(Contributed by Jim Kingdon, 20-Dec-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) ⇒ ⊢ (𝜑 → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
| |
| Theorem | maxabslemval 11390* |
Lemma for maxabs 11391. Value of the supremum. (Contributed by
Jim
Kingdon, 22-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) ∈ ℝ ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))) |
| |
| Theorem | maxabs 11391 |
Maximum of two real numbers in terms of absolute value. (Contributed by
Jim Kingdon, 20-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) |
| |
| Theorem | maxcl 11392 |
The maximum of two real numbers is a real number. (Contributed by Jim
Kingdon, 22-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈
ℝ) |
| |
| Theorem | maxle1 11393 |
The maximum of two reals is no smaller than the first real. Lemma 3.10 of
[Geuvers], p. 10. (Contributed by Jim
Kingdon, 21-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < )) |
| |
| Theorem | maxle2 11394 |
The maximum of two reals is no smaller than the second real. Lemma 3.10
of [Geuvers], p. 10. (Contributed by Jim
Kingdon, 21-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ, < )) |
| |
| Theorem | maxleast 11395 |
The maximum of two reals is a least upper bound. Lemma 3.11 of
[Geuvers], p. 10. (Contributed by Jim
Kingdon, 22-Dec-2021.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶) |
| |
| Theorem | maxleastb 11396 |
Two ways of saying the maximum of two numbers is less than or equal to a
third. (Contributed by Jim Kingdon, 31-Jan-2022.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
| |
| Theorem | maxleastlt 11397 |
The maximum as a least upper bound, in terms of less than. (Contributed
by Jim Kingdon, 9-Feb-2022.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ, < ))) → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
| |
| Theorem | maxleb 11398 |
Equivalence of ≤ and being equal to the maximum of
two reals. Lemma
3.12 of [Geuvers], p. 10. (Contributed by
Jim Kingdon, 21-Dec-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ sup({𝐴, 𝐵}, ℝ, < ) = 𝐵)) |
| |
| Theorem | dfabsmax 11399 |
Absolute value of a real number in terms of maximum. Definition 3.13 of
[Geuvers], p. 11. (Contributed by BJ and
Jim Kingdon, 21-Dec-2021.)
|
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < )) |
| |
| Theorem | maxltsup 11400 |
Two ways of saying the maximum of two numbers is less than a third.
(Contributed by Jim Kingdon, 10-Feb-2022.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) |