HomeHome Intuitionistic Logic Explorer
Theorem List (p. 114 of 149)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11301-11400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremclimuni 11301 An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐡) β†’ 𝐴 = 𝐡)
 
Theoremfclim 11302 The limit relation is function-like, and with codomian the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014.)
⇝ :dom ⇝ βŸΆβ„‚
 
Theoremclimdm 11303 Two ways to express that a function has a limit. (The expression ( ⇝ β€˜πΉ) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 18-Mar-2014.)
(𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ β€˜πΉ))
 
Theoremclimeu 11304* An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.)
(𝐹 ⇝ 𝐴 β†’ βˆƒ!π‘₯ 𝐹 ⇝ π‘₯)
 
Theoremclimreu 11305* An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.)
(𝐹 ⇝ 𝐴 β†’ βˆƒ!π‘₯ ∈ β„‚ 𝐹 ⇝ π‘₯)
 
Theoremclimmo 11306* An infinite sequence of complex numbers converges to at most one limit. (Contributed by Mario Carneiro, 13-Jul-2013.)
βˆƒ*π‘₯ 𝐹 ⇝ π‘₯
 
Theoremclimeq 11307* Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝐹 ∈ 𝑉)    &   (πœ‘ β†’ 𝐺 ∈ π‘Š)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) = (πΊβ€˜π‘˜))    β‡’   (πœ‘ β†’ (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴))
 
Theoremclimmpt 11308* Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   πΊ = (π‘˜ ∈ 𝑍 ↦ (πΉβ€˜π‘˜))    β‡’   ((𝑀 ∈ β„€ ∧ 𝐹 ∈ 𝑉) β†’ (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴))
 
Theorem2clim 11309* If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐺 ∈ 𝑉)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ∈ β„‚)    &   (πœ‘ β†’ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(absβ€˜((πΉβ€˜π‘˜) βˆ’ (πΊβ€˜π‘˜))) < π‘₯)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    β‡’   (πœ‘ β†’ 𝐺 ⇝ 𝐴)
 
Theoremclimshftlemg 11310 A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
((𝑀 ∈ β„€ ∧ 𝐹 ∈ 𝑉) β†’ (𝐹 ⇝ 𝐴 β†’ (𝐹 shift 𝑀) ⇝ 𝐴))
 
Theoremclimres 11311 A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
((𝑀 ∈ β„€ ∧ 𝐹 ∈ 𝑉) β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘€)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴))
 
Theoremclimshft 11312 A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
((𝑀 ∈ β„€ ∧ 𝐹 ∈ 𝑉) β†’ ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴))
 
Theoremserclim0 11313 The zero series converges to zero. (Contributed by Paul Chapman, 9-Feb-2008.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
(𝑀 ∈ β„€ β†’ seq𝑀( + , ((β„€β‰₯β€˜π‘€) Γ— {0})) ⇝ 0)
 
Theoremclimshft2 11314* A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐾 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ∈ π‘Š)    &   (πœ‘ β†’ 𝐺 ∈ 𝑋)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜(π‘˜ + 𝐾)) = (πΉβ€˜π‘˜))    β‡’   (πœ‘ β†’ (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴))
 
Theoremclimabs0 11315* Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ∈ 𝑉)    &   (πœ‘ β†’ 𝐺 ∈ π‘Š)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = (absβ€˜(πΉβ€˜π‘˜)))    β‡’   (πœ‘ β†’ (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0))
 
Theoremclimcn1 11316* Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐴 ∈ 𝐡)    &   ((πœ‘ ∧ 𝑧 ∈ 𝐡) β†’ (πΉβ€˜π‘§) ∈ β„‚)    &   (πœ‘ β†’ 𝐺 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐻 ∈ π‘Š)    &   ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ ℝ+ βˆ€π‘§ ∈ 𝐡 ((absβ€˜(𝑧 βˆ’ 𝐴)) < 𝑦 β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΄))) < π‘₯))    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ∈ 𝐡)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (π»β€˜π‘˜) = (πΉβ€˜(πΊβ€˜π‘˜)))    β‡’   (πœ‘ β†’ 𝐻 ⇝ (πΉβ€˜π΄))
 
Theoremclimcn2 11317* Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐴 ∈ 𝐢)    &   (πœ‘ β†’ 𝐡 ∈ 𝐷)    &   ((πœ‘ ∧ (𝑒 ∈ 𝐢 ∧ 𝑣 ∈ 𝐷)) β†’ (𝑒𝐹𝑣) ∈ β„‚)    &   (πœ‘ β†’ 𝐺 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐻 ⇝ 𝐡)    &   (πœ‘ β†’ 𝐾 ∈ π‘Š)    &   ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘’ ∈ 𝐢 βˆ€π‘£ ∈ 𝐷 (((absβ€˜(𝑒 βˆ’ 𝐴)) < 𝑦 ∧ (absβ€˜(𝑣 βˆ’ 𝐡)) < 𝑧) β†’ (absβ€˜((𝑒𝐹𝑣) βˆ’ (𝐴𝐹𝐡))) < π‘₯))    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ∈ 𝐢)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (π»β€˜π‘˜) ∈ 𝐷)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΎβ€˜π‘˜) = ((πΊβ€˜π‘˜)𝐹(π»β€˜π‘˜)))    β‡’   (πœ‘ β†’ 𝐾 ⇝ (𝐴𝐹𝐡))
 
Theoremaddcn2 11318* Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn and df-cncf are not yet available to us. See addcncntop 14055 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
((𝐴 ∈ ℝ+ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ βˆƒπ‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘’ ∈ β„‚ βˆ€π‘£ ∈ β„‚ (((absβ€˜(𝑒 βˆ’ 𝐡)) < 𝑦 ∧ (absβ€˜(𝑣 βˆ’ 𝐢)) < 𝑧) β†’ (absβ€˜((𝑒 + 𝑣) βˆ’ (𝐡 + 𝐢))) < 𝐴))
 
Theoremsubcn2 11319* Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
((𝐴 ∈ ℝ+ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ βˆƒπ‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘’ ∈ β„‚ βˆ€π‘£ ∈ β„‚ (((absβ€˜(𝑒 βˆ’ 𝐡)) < 𝑦 ∧ (absβ€˜(𝑣 βˆ’ 𝐢)) < 𝑧) β†’ (absβ€˜((𝑒 βˆ’ 𝑣) βˆ’ (𝐡 βˆ’ 𝐢))) < 𝐴))
 
Theoremmulcn2 11320* Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
((𝐴 ∈ ℝ+ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ βˆƒπ‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘’ ∈ β„‚ βˆ€π‘£ ∈ β„‚ (((absβ€˜(𝑒 βˆ’ 𝐡)) < 𝑦 ∧ (absβ€˜(𝑣 βˆ’ 𝐢)) < 𝑧) β†’ (absβ€˜((𝑒 Β· 𝑣) βˆ’ (𝐡 Β· 𝐢))) < 𝐴))
 
Theoremreccn2ap 11321* The reciprocal function is continuous. The class 𝑇 is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2177. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
𝑇 = (inf({1, ((absβ€˜π΄) Β· 𝐡)}, ℝ, < ) Β· ((absβ€˜π΄) / 2))    β‡’   ((𝐴 ∈ β„‚ ∧ 𝐴 # 0 ∧ 𝐡 ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ ℝ+ βˆ€π‘§ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 0} ((absβ€˜(𝑧 βˆ’ 𝐴)) < 𝑦 β†’ (absβ€˜((1 / 𝑧) βˆ’ (1 / 𝐴))) < 𝐡))
 
Theoremcn1lem 11322* A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
𝐹:β„‚βŸΆβ„‚    &   ((𝑧 ∈ β„‚ ∧ 𝐴 ∈ β„‚) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΄))) ≀ (absβ€˜(𝑧 βˆ’ 𝐴)))    β‡’   ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ ℝ+ βˆ€π‘§ ∈ β„‚ ((absβ€˜(𝑧 βˆ’ 𝐴)) < 𝑦 β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΄))) < π‘₯))
 
Theoremabscn2 11323* The absolute value function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ β„‚ ∧ π‘₯ ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ ℝ+ βˆ€π‘§ ∈ β„‚ ((absβ€˜(𝑧 βˆ’ 𝐴)) < 𝑦 β†’ (absβ€˜((absβ€˜π‘§) βˆ’ (absβ€˜π΄))) < π‘₯))
 
Theoremcjcn2 11324* The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ β„‚ ∧ π‘₯ ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ ℝ+ βˆ€π‘§ ∈ β„‚ ((absβ€˜(𝑧 βˆ’ 𝐴)) < 𝑦 β†’ (absβ€˜((βˆ—β€˜π‘§) βˆ’ (βˆ—β€˜π΄))) < π‘₯))
 
Theoremrecn2 11325* The real part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ β„‚ ∧ π‘₯ ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ ℝ+ βˆ€π‘§ ∈ β„‚ ((absβ€˜(𝑧 βˆ’ 𝐴)) < 𝑦 β†’ (absβ€˜((β„œβ€˜π‘§) βˆ’ (β„œβ€˜π΄))) < π‘₯))
 
Theoremimcn2 11326* The imaginary part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ β„‚ ∧ π‘₯ ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ ℝ+ βˆ€π‘§ ∈ β„‚ ((absβ€˜(𝑧 βˆ’ 𝐴)) < 𝑦 β†’ (absβ€˜((β„‘β€˜π‘§) βˆ’ (β„‘β€˜π΄))) < π‘₯))
 
Theoremclimcn1lem 11327* The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐺 ∈ π‘Š)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   π»:β„‚βŸΆβ„‚    &   ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ ℝ+ βˆ€π‘§ ∈ β„‚ ((absβ€˜(𝑧 βˆ’ 𝐴)) < 𝑦 β†’ (absβ€˜((π»β€˜π‘§) βˆ’ (π»β€˜π΄))) < π‘₯))    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = (π»β€˜(πΉβ€˜π‘˜)))    β‡’   (πœ‘ β†’ 𝐺 ⇝ (π»β€˜π΄))
 
Theoremclimabs 11328* Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐺 ∈ π‘Š)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = (absβ€˜(πΉβ€˜π‘˜)))    β‡’   (πœ‘ β†’ 𝐺 ⇝ (absβ€˜π΄))
 
Theoremclimcj 11329* Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐺 ∈ π‘Š)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = (βˆ—β€˜(πΉβ€˜π‘˜)))    β‡’   (πœ‘ β†’ 𝐺 ⇝ (βˆ—β€˜π΄))
 
Theoremclimre 11330* Limit of the real part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐺 ∈ π‘Š)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = (β„œβ€˜(πΉβ€˜π‘˜)))    β‡’   (πœ‘ β†’ 𝐺 ⇝ (β„œβ€˜π΄))
 
Theoremclimim 11331* Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐺 ∈ π‘Š)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = (β„‘β€˜(πΉβ€˜π‘˜)))    β‡’   (πœ‘ β†’ 𝐺 ⇝ (β„‘β€˜π΄))
 
Theoremclimrecl 11332* The limit of a convergent real sequence is real. Corollary 12-2.5 of [Gleason] p. 172. (Contributed by NM, 10-Sep-2005.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ ℝ)    β‡’   (πœ‘ β†’ 𝐴 ∈ ℝ)
 
Theoremclimge0 11333* A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ 0 ≀ (πΉβ€˜π‘˜))    β‡’   (πœ‘ β†’ 0 ≀ 𝐴)
 
Theoremclimadd 11334* Limit of the sum of two converging sequences. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by NM, 24-Sep-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐻 ∈ 𝑋)    &   (πœ‘ β†’ 𝐺 ⇝ 𝐡)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (π»β€˜π‘˜) = ((πΉβ€˜π‘˜) + (πΊβ€˜π‘˜)))    β‡’   (πœ‘ β†’ 𝐻 ⇝ (𝐴 + 𝐡))
 
Theoremclimmul 11335* Limit of the product of two converging sequences. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by NM, 27-Dec-2005.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐻 ∈ 𝑋)    &   (πœ‘ β†’ 𝐺 ⇝ 𝐡)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (π»β€˜π‘˜) = ((πΉβ€˜π‘˜) Β· (πΊβ€˜π‘˜)))    β‡’   (πœ‘ β†’ 𝐻 ⇝ (𝐴 Β· 𝐡))
 
Theoremclimsub 11336* Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐻 ∈ 𝑋)    &   (πœ‘ β†’ 𝐺 ⇝ 𝐡)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (π»β€˜π‘˜) = ((πΉβ€˜π‘˜) βˆ’ (πΊβ€˜π‘˜)))    β‡’   (πœ‘ β†’ 𝐻 ⇝ (𝐴 βˆ’ 𝐡))
 
Theoremclimaddc1 11337* Limit of a constant 𝐢 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐺 ∈ π‘Š)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = ((πΉβ€˜π‘˜) + 𝐢))    β‡’   (πœ‘ β†’ 𝐺 ⇝ (𝐴 + 𝐢))
 
Theoremclimaddc2 11338* Limit of a constant 𝐢 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐺 ∈ π‘Š)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = (𝐢 + (πΉβ€˜π‘˜)))    β‡’   (πœ‘ β†’ 𝐺 ⇝ (𝐢 + 𝐴))
 
Theoremclimmulc2 11339* Limit of a sequence multiplied by a constant 𝐢. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐺 ∈ π‘Š)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = (𝐢 Β· (πΉβ€˜π‘˜)))    β‡’   (πœ‘ β†’ 𝐺 ⇝ (𝐢 Β· 𝐴))
 
Theoremclimsubc1 11340* Limit of a constant 𝐢 subtracted from each term of a sequence. (Contributed by Mario Carneiro, 9-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐺 ∈ π‘Š)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = ((πΉβ€˜π‘˜) βˆ’ 𝐢))    β‡’   (πœ‘ β†’ 𝐺 ⇝ (𝐴 βˆ’ 𝐢))
 
Theoremclimsubc2 11341* Limit of a constant 𝐢 minus each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐺 ∈ π‘Š)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = (𝐢 βˆ’ (πΉβ€˜π‘˜)))    β‡’   (πœ‘ β†’ 𝐺 ⇝ (𝐢 βˆ’ 𝐴))
 
Theoremclimle 11342* Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐺 ⇝ 𝐡)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ≀ (πΊβ€˜π‘˜))    β‡’   (πœ‘ β†’ 𝐴 ≀ 𝐡)
 
Theoremclimsqz 11343* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐺 ∈ π‘Š)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ≀ (πΊβ€˜π‘˜))    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ≀ 𝐴)    β‡’   (πœ‘ β†’ 𝐺 ⇝ 𝐴)
 
Theoremclimsqz2 11344* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   (πœ‘ β†’ 𝐺 ∈ π‘Š)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ≀ (πΉβ€˜π‘˜))    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ 𝐴 ≀ (πΊβ€˜π‘˜))    β‡’   (πœ‘ β†’ 𝐺 ⇝ 𝐴)
 
Theoremclim2ser 11345* The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑁 ∈ 𝑍)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ 𝐴)    β‡’   (πœ‘ β†’ seq(𝑁 + 1)( + , 𝐹) ⇝ (𝐴 βˆ’ (seq𝑀( + , 𝐹)β€˜π‘)))
 
Theoremclim2ser2 11346* The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑁 ∈ 𝑍)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   (πœ‘ β†’ seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴)    β‡’   (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)β€˜π‘)))
 
Theoremiserex 11347* An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑁 ∈ 𝑍)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    β‡’   (πœ‘ β†’ (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
 
Theoremisermulc2 11348* Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ 𝐴)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = (𝐢 Β· (πΉβ€˜π‘˜)))    β‡’   (πœ‘ β†’ seq𝑀( + , 𝐺) ⇝ (𝐢 Β· 𝐴))
 
Theoremclimlec2 11349* Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐡)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ 𝐴 ≀ (πΉβ€˜π‘˜))    β‡’   (πœ‘ β†’ 𝐴 ≀ 𝐡)
 
Theoremiserle 11350* Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ 𝐴)    &   (πœ‘ β†’ seq𝑀( + , 𝐺) ⇝ 𝐡)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ≀ (πΊβ€˜π‘˜))    β‡’   (πœ‘ β†’ 𝐴 ≀ 𝐡)
 
Theoremiserge0 11351* The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ 𝐴)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ 0 ≀ (πΉβ€˜π‘˜))    β‡’   (πœ‘ β†’ 0 ≀ 𝐴)
 
Theoremclimub 11352* The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑁 ∈ 𝑍)    &   (πœ‘ β†’ 𝐹 ⇝ 𝐴)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ≀ (πΉβ€˜(π‘˜ + 1)))    β‡’   (πœ‘ β†’ (πΉβ€˜π‘) ≀ 𝐴)
 
Theoremclimserle 11353* The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑁 ∈ 𝑍)    &   (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ 𝐴)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ 0 ≀ (πΉβ€˜π‘˜))    β‡’   (πœ‘ β†’ (seq𝑀( + , 𝐹)β€˜π‘) ≀ 𝐴)
 
Theoremiser3shft 11354* Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)
(πœ‘ β†’ 𝐹 ∈ 𝑉)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝑁 ∈ β„€)    &   ((πœ‘ ∧ π‘₯ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘₯) ∈ 𝑆)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) β†’ (π‘₯ + 𝑦) ∈ 𝑆)    β‡’   (πœ‘ β†’ (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴))
 
Theoremclimcau 11355* A converging sequence of complex numbers is a Cauchy sequence. The converse would require excluded middle or a different definition of Cauchy sequence (for example, fixing a rate of convergence as in climcvg1n 11358). Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    β‡’   ((𝑀 ∈ β„€ ∧ 𝐹 ∈ dom ⇝ ) β†’ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(absβ€˜((πΉβ€˜π‘˜) βˆ’ (πΉβ€˜π‘—))) < π‘₯)
 
Theoremclimrecvg1n 11356* A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within 𝐢 / 𝑛 of the nth term, where 𝐢 is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
(πœ‘ β†’ 𝐹:β„•βŸΆβ„)    &   (πœ‘ β†’ 𝐢 ∈ ℝ+)    &   (πœ‘ β†’ βˆ€π‘› ∈ β„• βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘›)(absβ€˜((πΉβ€˜π‘˜) βˆ’ (πΉβ€˜π‘›))) < (𝐢 / 𝑛))    β‡’   (πœ‘ β†’ 𝐹 ∈ dom ⇝ )
 
Theoremclimcvg1nlem 11357* Lemma for climcvg1n 11358. We construct sequences of the real and imaginary parts of each term of 𝐹, show those converge, and use that to show that 𝐹 converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
(πœ‘ β†’ 𝐹:β„•βŸΆβ„‚)    &   (πœ‘ β†’ 𝐢 ∈ ℝ+)    &   (πœ‘ β†’ βˆ€π‘› ∈ β„• βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘›)(absβ€˜((πΉβ€˜π‘˜) βˆ’ (πΉβ€˜π‘›))) < (𝐢 / 𝑛))    &   πΊ = (π‘₯ ∈ β„• ↦ (β„œβ€˜(πΉβ€˜π‘₯)))    &   π» = (π‘₯ ∈ β„• ↦ (β„‘β€˜(πΉβ€˜π‘₯)))    &   π½ = (π‘₯ ∈ β„• ↦ (i Β· (π»β€˜π‘₯)))    β‡’   (πœ‘ β†’ 𝐹 ∈ dom ⇝ )
 
Theoremclimcvg1n 11358* A Cauchy sequence of complex numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within 𝐢 / 𝑛 of the nth term, where 𝐢 is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
(πœ‘ β†’ 𝐹:β„•βŸΆβ„‚)    &   (πœ‘ β†’ 𝐢 ∈ ℝ+)    &   (πœ‘ β†’ βˆ€π‘› ∈ β„• βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘›)(absβ€˜((πΉβ€˜π‘˜) βˆ’ (πΉβ€˜π‘›))) < (𝐢 / 𝑛))    β‡’   (πœ‘ β†’ 𝐹 ∈ dom ⇝ )
 
Theoremclimcaucn 11359* A converging sequence of complex numbers is a Cauchy sequence. This is like climcau 11355 but adds the part that (πΉβ€˜π‘˜) is complex. (Contributed by Jim Kingdon, 24-Aug-2021.)
𝑍 = (β„€β‰₯β€˜π‘€)    β‡’   ((𝑀 ∈ β„€ ∧ 𝐹 ∈ dom ⇝ ) β†’ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)((πΉβ€˜π‘˜) ∈ β„‚ ∧ (absβ€˜((πΉβ€˜π‘˜) βˆ’ (πΉβ€˜π‘—))) < π‘₯))
 
Theoremserf0 11360* If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹 ∈ 𝑉)    &   (πœ‘ β†’ seq𝑀( + , 𝐹) ∈ dom ⇝ )    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)    β‡’   (πœ‘ β†’ 𝐹 ⇝ 0)
 
4.8.2  Finite and infinite sums
 
Syntaxcsu 11361 Extend class notation to include finite summations. (An underscore was added to the ASCII token in order to facilitate set.mm text searches, since "sum" is a commonly used word in comments.)
class Ξ£π‘˜ ∈ 𝐴 𝐡
 
Definitiondf-sumdc 11362* Define the sum of a series with an index set of integers 𝐴. The variable π‘˜ is normally a free variable in 𝐡, i.e., 𝐡 can be thought of as 𝐡(π‘˜). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an if expression so that we only need 𝐡 to be defined where π‘˜ ∈ 𝐴. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers). Examples: Ξ£π‘˜ ∈ {1, 2, 4}π‘˜ means 1 + 2 + 4 = 7, and Ξ£π‘˜ ∈ β„•(1 / (2β†‘π‘˜)) = 1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 11530). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
Ξ£π‘˜ ∈ 𝐴 𝐡 = (β„©π‘₯(βˆƒπ‘š ∈ β„€ (𝐴 βŠ† (β„€β‰₯β€˜π‘š) ∧ βˆ€π‘— ∈ (β„€β‰₯β€˜π‘š)DECID 𝑗 ∈ 𝐴 ∧ seqπ‘š( + , (𝑛 ∈ β„€ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / π‘˜β¦Œπ΅, 0))) ⇝ π‘₯) ∨ βˆƒπ‘š ∈ β„• βˆƒπ‘“(𝑓:(1...π‘š)–1-1-onto→𝐴 ∧ π‘₯ = (seq1( + , (𝑛 ∈ β„• ↦ if(𝑛 ≀ π‘š, ⦋(π‘“β€˜π‘›) / π‘˜β¦Œπ΅, 0)))β€˜π‘š))))
 
Theoremsumeq1 11363 Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
(𝐴 = 𝐡 β†’ Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐢)
 
Theoremnfsum1 11364 Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
β„²π‘˜π΄    β‡’   β„²π‘˜Ξ£π‘˜ ∈ 𝐴 𝐡
 
Theoremnfsum 11365 Bound-variable hypothesis builder for sum: if π‘₯ is (effectively) not free in 𝐴 and 𝐡, it is not free in Ξ£π‘˜ ∈ 𝐴𝐡. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
β„²π‘₯𝐴    &   β„²π‘₯𝐡    β‡’   β„²π‘₯Ξ£π‘˜ ∈ 𝐴 𝐡
 
Theoremsumdc 11366* Decidability of a subset of upper integers. (Contributed by Jim Kingdon, 1-Jan-2022.)
(πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐴 βŠ† (β„€β‰₯β€˜π‘€))    &   (πœ‘ β†’ βˆ€π‘₯ ∈ (β„€β‰₯β€˜π‘€)DECID π‘₯ ∈ 𝐴)    &   (πœ‘ β†’ 𝑁 ∈ β„€)    β‡’   (πœ‘ β†’ DECID 𝑁 ∈ 𝐴)
 
Theoremsumeq2 11367* Equality theorem for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
(βˆ€π‘˜ ∈ 𝐴 𝐡 = 𝐢 β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Ξ£π‘˜ ∈ 𝐴 𝐢)
 
Theoremcbvsum 11368 Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
(𝑗 = π‘˜ β†’ 𝐡 = 𝐢)    &   β„²π‘˜π΄    &   β„²π‘—𝐴    &   β„²π‘˜π΅    &   β„²π‘—𝐢    β‡’   Ξ£π‘— ∈ 𝐴 𝐡 = Ξ£π‘˜ ∈ 𝐴 𝐢
 
Theoremcbvsumv 11369* Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
(𝑗 = π‘˜ β†’ 𝐡 = 𝐢)    β‡’   Ξ£π‘— ∈ 𝐴 𝐡 = Ξ£π‘˜ ∈ 𝐴 𝐢
 
Theoremcbvsumi 11370* Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
β„²π‘˜π΅    &   β„²π‘—𝐢    &   (𝑗 = π‘˜ β†’ 𝐡 = 𝐢)    β‡’   Ξ£π‘— ∈ 𝐴 𝐡 = Ξ£π‘˜ ∈ 𝐴 𝐢
 
Theoremsumeq1i 11371* Equality inference for sum. (Contributed by NM, 2-Jan-2006.)
𝐴 = 𝐡    β‡’   Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐢
 
Theoremsumeq2i 11372* Equality inference for sum. (Contributed by NM, 3-Dec-2005.)
(π‘˜ ∈ 𝐴 β†’ 𝐡 = 𝐢)    β‡’   Ξ£π‘˜ ∈ 𝐴 𝐡 = Ξ£π‘˜ ∈ 𝐴 𝐢
 
Theoremsumeq12i 11373* Equality inference for sum. (Contributed by FL, 10-Dec-2006.)
𝐴 = 𝐡    &   (π‘˜ ∈ 𝐴 β†’ 𝐢 = 𝐷)    β‡’   Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐷
 
Theoremsumeq1d 11374* Equality deduction for sum. (Contributed by NM, 1-Nov-2005.)
(πœ‘ β†’ 𝐴 = 𝐡)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐢)
 
Theoremsumeq2d 11375* Equality deduction for sum. Note that unlike sumeq2dv 11376, π‘˜ may occur in πœ‘. (Contributed by NM, 1-Nov-2005.)
(πœ‘ β†’ βˆ€π‘˜ ∈ 𝐴 𝐡 = 𝐢)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Ξ£π‘˜ ∈ 𝐴 𝐢)
 
Theoremsumeq2dv 11376* Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 = 𝐢)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Ξ£π‘˜ ∈ 𝐴 𝐢)
 
Theoremsumeq2ad 11377* Equality deduction for sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(πœ‘ β†’ 𝐡 = 𝐢)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Ξ£π‘˜ ∈ 𝐴 𝐢)
 
Theoremsumeq2sdv 11378* Equality deduction for sum. (Contributed by NM, 3-Jan-2006.)
(πœ‘ β†’ 𝐡 = 𝐢)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Ξ£π‘˜ ∈ 𝐴 𝐢)
 
Theorem2sumeq2dv 11379* Equality deduction for double sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
((πœ‘ ∧ 𝑗 ∈ 𝐴 ∧ π‘˜ ∈ 𝐡) β†’ 𝐢 = 𝐷)    β‡’   (πœ‘ β†’ Σ𝑗 ∈ 𝐴 Ξ£π‘˜ ∈ 𝐡 𝐢 = Σ𝑗 ∈ 𝐴 Ξ£π‘˜ ∈ 𝐡 𝐷)
 
Theoremsumeq12dv 11380* Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
(πœ‘ β†’ 𝐴 = 𝐡)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 = 𝐷)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐷)
 
Theoremsumeq12rdv 11381* Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
(πœ‘ β†’ 𝐴 = 𝐡)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ 𝐢 = 𝐷)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐷)
 
Theoremsumfct 11382* A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 18-Sep-2022.)
(βˆ€π‘˜ ∈ 𝐴 𝐡 ∈ β„‚ β†’ Σ𝑗 ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘—) = Ξ£π‘˜ ∈ 𝐴 𝐡)
 
Theoremfz1f1o 11383* A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014.)
(𝐴 ∈ Fin β†’ (𝐴 = βˆ… ∨ ((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)))
 
Theoremnnf1o 11384 Lemma for sum and product theorems. (Contributed by Jim Kingdon, 15-Aug-2022.)
(πœ‘ β†’ (𝑀 ∈ β„• ∧ 𝑁 ∈ β„•))    &   (πœ‘ β†’ 𝐹:(1...𝑀)–1-1-onto→𝐴)    &   (πœ‘ β†’ 𝐺:(1...𝑁)–1-1-onto→𝐴)    β‡’   (πœ‘ β†’ 𝑁 = 𝑀)
 
Theoremsumrbdclem 11385* Lemma for sumrbdc 11387. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
𝐹 = (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 0))    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ DECID π‘˜ ∈ 𝐴)    &   (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))    β‡’   ((πœ‘ ∧ 𝐴 βŠ† (β„€β‰₯β€˜π‘)) β†’ (seq𝑀( + , 𝐹) β†Ύ (β„€β‰₯β€˜π‘)) = seq𝑁( + , 𝐹))
 
Theoremfsum3cvg 11386* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 12-Nov-2022.)
𝐹 = (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 0))    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ DECID π‘˜ ∈ 𝐴)    &   (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))    &   (πœ‘ β†’ 𝐴 βŠ† (𝑀...𝑁))    β‡’   (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)β€˜π‘))
 
Theoremsumrbdc 11387* Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
𝐹 = (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 0))    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝑁 ∈ β„€)    &   (πœ‘ β†’ 𝐴 βŠ† (β„€β‰₯β€˜π‘€))    &   (πœ‘ β†’ 𝐴 βŠ† (β„€β‰₯β€˜π‘))    &   ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ DECID π‘˜ ∈ 𝐴)    &   ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘)) β†’ DECID π‘˜ ∈ 𝐴)    β‡’   (πœ‘ β†’ (seq𝑀( + , 𝐹) ⇝ 𝐢 ↔ seq𝑁( + , 𝐹) ⇝ 𝐢))
 
Theoremsummodclem3 11388* Lemma for summodc 11391. (Contributed by Mario Carneiro, 29-Mar-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
𝐹 = (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 0))    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ (𝑀 ∈ β„• ∧ 𝑁 ∈ β„•))    &   (πœ‘ β†’ 𝑓:(1...𝑀)–1-1-onto→𝐴)    &   (πœ‘ β†’ 𝐾:(1...𝑁)–1-1-onto→𝐴)    &   πΊ = (𝑛 ∈ β„• ↦ if(𝑛 ≀ 𝑀, ⦋(π‘“β€˜π‘›) / π‘˜β¦Œπ΅, 0))    &   π» = (𝑛 ∈ β„• ↦ if(𝑛 ≀ 𝑁, ⦋(πΎβ€˜π‘›) / π‘˜β¦Œπ΅, 0))    β‡’   (πœ‘ β†’ (seq1( + , 𝐺)β€˜π‘€) = (seq1( + , 𝐻)β€˜π‘))
 
Theoremsummodclem2a 11389* Lemma for summodc 11391. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
𝐹 = (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 0))    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ DECID π‘˜ ∈ 𝐴)    &   πΊ = (𝑛 ∈ β„• ↦ if(𝑛 ≀ (β™―β€˜π΄), ⦋(π‘“β€˜π‘›) / π‘˜β¦Œπ΅, 0))    &   π» = (𝑛 ∈ β„• ↦ if(𝑛 ≀ 𝑁, ⦋(πΎβ€˜π‘›) / π‘˜β¦Œπ΅, 0))    &   (πœ‘ β†’ 𝑁 ∈ β„•)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐴 βŠ† (β„€β‰₯β€˜π‘€))    &   (πœ‘ β†’ 𝑓:(1...𝑁)–1-1-onto→𝐴)    &   (πœ‘ β†’ 𝐾 Isom < , < ((1...(β™―β€˜π΄)), 𝐴))    β‡’   (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ (seq1( + , 𝐺)β€˜π‘))
 
Theoremsummodclem2 11390* Lemma for summodc 11391. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
𝐹 = (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 0))    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)    &   πΊ = (𝑛 ∈ β„• ↦ if(𝑛 ≀ (β™―β€˜π΄), ⦋(π‘“β€˜π‘›) / π‘˜β¦Œπ΅, 0))    β‡’   ((πœ‘ ∧ βˆƒπ‘š ∈ β„€ (𝐴 βŠ† (β„€β‰₯β€˜π‘š) ∧ βˆ€π‘— ∈ (β„€β‰₯β€˜π‘š)DECID 𝑗 ∈ 𝐴 ∧ seqπ‘š( + , 𝐹) ⇝ π‘₯)) β†’ (βˆƒπ‘š ∈ β„• βˆƒπ‘“(𝑓:(1...π‘š)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)β€˜π‘š)) β†’ π‘₯ = 𝑦))
 
Theoremsummodc 11391* A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
𝐹 = (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 0))    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)    &   πΊ = (𝑛 ∈ β„• ↦ if(𝑛 ≀ (β™―β€˜π΄), ⦋(π‘“β€˜π‘›) / π‘˜β¦Œπ΅, 0))    &   πΊ = (𝑛 ∈ β„• ↦ if(𝑛 ≀ (β™―β€˜π΄), ⦋(π‘“β€˜π‘›) / π‘˜β¦Œπ΅, 0))    β‡’   (πœ‘ β†’ βˆƒ*π‘₯(βˆƒπ‘š ∈ β„€ (𝐴 βŠ† (β„€β‰₯β€˜π‘š) ∧ βˆ€π‘— ∈ (β„€β‰₯β€˜π‘š)DECID 𝑗 ∈ 𝐴 ∧ seqπ‘š( + , 𝐹) ⇝ π‘₯) ∨ βˆƒπ‘š ∈ β„• βˆƒπ‘“(𝑓:(1...π‘š)–1-1-onto→𝐴 ∧ π‘₯ = (seq1( + , 𝐺)β€˜π‘š))))
 
Theoremzsumdc 11392* Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.) (Revised by Jim Kingdon, 8-Apr-2023.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐴 βŠ† 𝑍)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) = if(π‘˜ ∈ 𝐴, 𝐡, 0))    &   (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑍 DECID π‘₯ ∈ 𝐴)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = ( ⇝ β€˜seq𝑀( + , 𝐹)))
 
Theoremisum 11393* Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 7-Apr-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) = 𝐡)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ 𝑍 𝐡 = ( ⇝ β€˜seq𝑀( + , 𝐹)))
 
Theoremfsumgcl 11394* Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
(π‘˜ = (πΉβ€˜π‘›) β†’ 𝐡 = 𝐢)    &   (πœ‘ β†’ 𝑀 ∈ β„•)    &   (πœ‘ β†’ 𝐹:(1...𝑀)–1-1-onto→𝐴)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)    &   ((πœ‘ ∧ 𝑛 ∈ (1...𝑀)) β†’ (πΊβ€˜π‘›) = 𝐢)    β‡’   (πœ‘ β†’ βˆ€π‘› ∈ (1...𝑀)(πΊβ€˜π‘›) ∈ β„‚)
 
Theoremfsum3 11395* The value of a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
(π‘˜ = (πΉβ€˜π‘›) β†’ 𝐡 = 𝐢)    &   (πœ‘ β†’ 𝑀 ∈ β„•)    &   (πœ‘ β†’ 𝐹:(1...𝑀)–1-1-onto→𝐴)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)    &   ((πœ‘ ∧ 𝑛 ∈ (1...𝑀)) β†’ (πΊβ€˜π‘›) = 𝐢)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = (seq1( + , (𝑛 ∈ β„• ↦ if(𝑛 ≀ 𝑀, (πΊβ€˜π‘›), 0)))β€˜π‘€))
 
Theoremsum0 11396 Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Ξ£π‘˜ ∈ βˆ… 𝐴 = 0
 
Theoremisumz 11397* Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
(((𝑀 ∈ β„€ ∧ 𝐴 βŠ† (β„€β‰₯β€˜π‘€) ∧ βˆ€π‘— ∈ (β„€β‰₯β€˜π‘€)DECID 𝑗 ∈ 𝐴) ∨ 𝐴 ∈ Fin) β†’ Ξ£π‘˜ ∈ 𝐴 0 = 0)
 
Theoremfsumf1o 11398* Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
(π‘˜ = 𝐺 β†’ 𝐡 = 𝐷)    &   (πœ‘ β†’ 𝐢 ∈ Fin)    &   (πœ‘ β†’ 𝐹:𝐢–1-1-onto→𝐴)    &   ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ (πΉβ€˜π‘›) = 𝐺)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Σ𝑛 ∈ 𝐢 𝐷)
 
Theoremisumss 11399* Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
(πœ‘ β†’ 𝐴 βŠ† 𝐡)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ (𝐡 βˆ– 𝐴)) β†’ 𝐢 = 0)    &   (πœ‘ β†’ βˆ€π‘— ∈ (β„€β‰₯β€˜π‘€)DECID 𝑗 ∈ 𝐴)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐡 βŠ† (β„€β‰₯β€˜π‘€))    &   (πœ‘ β†’ βˆ€π‘— ∈ (β„€β‰₯β€˜π‘€)DECID 𝑗 ∈ 𝐡)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐢)
 
Theoremfisumss 11400* Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
(πœ‘ β†’ 𝐴 βŠ† 𝐡)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 ∈ β„‚)    &   ((πœ‘ ∧ π‘˜ ∈ (𝐡 βˆ– 𝐴)) β†’ 𝐢 = 0)    &   (πœ‘ β†’ βˆ€π‘— ∈ 𝐡 DECID 𝑗 ∈ 𝐴)    &   (πœ‘ β†’ 𝐡 ∈ Fin)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐢 = Ξ£π‘˜ ∈ 𝐡 𝐢)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14834
  Copyright terms: Public domain < Previous  Next >