Step | Hyp | Ref
| Expression |
1 | | 3simpb 985 |
. . . . . . . 8
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
2 | | eleq1w 2227 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑖 → (𝑛 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴)) |
3 | | csbeq1 3048 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑖 → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑖 / 𝑘⦌𝐵) |
4 | 2, 3 | ifbieq1d 3542 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑖 → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) = if(𝑖 ∈ 𝐴, ⦋𝑖 / 𝑘⦌𝐵, 0)) |
5 | 4 | cbvmptv 4078 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = (𝑖 ∈ ℤ ↦ if(𝑖 ∈ 𝐴, ⦋𝑖 / 𝑘⦌𝐵, 0)) |
6 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ 𝐴) → 𝑖 ∈ 𝐴) |
7 | | zisum.5 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
8 | 7 | ralrimiva 2539 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
9 | 8 | ad3antrrr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
10 | | nfcsb1v 3078 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 |
11 | 10 | nfel1 2319 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ |
12 | | csbeq1a 3054 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑘⦌𝐵) |
13 | 12 | eleq1d 2235 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ)) |
14 | 11, 13 | rspc 2824 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ)) |
15 | 6, 9, 14 | sylc 62 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ) |
16 | | simplr 520 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝑚 ∈ ℤ) |
17 | | zisum.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
18 | 17 | ad2antrr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝑀 ∈ ℤ) |
19 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
20 | | zisum.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
21 | | zisum.1 |
. . . . . . . . . . . . 13
⊢ 𝑍 =
(ℤ≥‘𝑀) |
22 | 20, 21 | sseqtrdi 3190 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
23 | 22 | ad2antrr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
24 | | zisum.dc |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑥 ∈ 𝑍 DECID 𝑥 ∈ 𝐴) |
25 | 21 | raleqi 2665 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑥 ∈
𝑍 DECID
𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴) |
26 | 24, 25 | sylib 121 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴) |
27 | | eleq1w 2227 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑖 → (𝑥 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴)) |
28 | 27 | dcbid 828 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑖 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑖 ∈ 𝐴)) |
29 | 28 | cbvralv 2692 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
(ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴 ↔ ∀𝑖 ∈ (ℤ≥‘𝑀)DECID 𝑖 ∈ 𝐴) |
30 | 26, 29 | sylib 121 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑖 ∈ (ℤ≥‘𝑀)DECID 𝑖 ∈ 𝐴) |
31 | 30 | r19.21bi 2554 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → DECID
𝑖 ∈ 𝐴) |
32 | 31 | adantlr 469 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → DECID
𝑖 ∈ 𝐴) |
33 | 32 | adantlr 469 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → DECID
𝑖 ∈ 𝐴) |
34 | 33 | adantlr 469 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆
(ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → DECID
𝑖 ∈ 𝐴) |
35 | | simp-4l 531 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆
(ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) ∧ ¬ 𝑖 ∈
(ℤ≥‘𝑀)) → 𝜑) |
36 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆
(ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) ∧ ¬ 𝑖 ∈
(ℤ≥‘𝑀)) → ¬ 𝑖 ∈ (ℤ≥‘𝑀)) |
37 | 22 | ssneld 3144 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (¬ 𝑖 ∈ (ℤ≥‘𝑀) → ¬ 𝑖 ∈ 𝐴)) |
38 | 35, 36, 37 | sylc 62 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆
(ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) ∧ ¬ 𝑖 ∈
(ℤ≥‘𝑀)) → ¬ 𝑖 ∈ 𝐴) |
39 | 38 | olcd 724 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆
(ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) ∧ ¬ 𝑖 ∈
(ℤ≥‘𝑀)) → (𝑖 ∈ 𝐴 ∨ ¬ 𝑖 ∈ 𝐴)) |
40 | | df-dc 825 |
. . . . . . . . . . . . 13
⊢
(DECID 𝑖 ∈ 𝐴 ↔ (𝑖 ∈ 𝐴 ∨ ¬ 𝑖 ∈ 𝐴)) |
41 | 39, 40 | sylibr 133 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆
(ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) ∧ ¬ 𝑖 ∈
(ℤ≥‘𝑀)) → DECID 𝑖 ∈ 𝐴) |
42 | | eluzelz 9475 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈
(ℤ≥‘𝑚) → 𝑖 ∈ ℤ) |
43 | | eluzdc 9548 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) →
DECID 𝑖
∈ (ℤ≥‘𝑀)) |
44 | 18, 42, 43 | syl2an 287 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → DECID
𝑖 ∈
(ℤ≥‘𝑀)) |
45 | | exmiddc 826 |
. . . . . . . . . . . . 13
⊢
(DECID 𝑖 ∈ (ℤ≥‘𝑀) → (𝑖 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑖 ∈ (ℤ≥‘𝑀))) |
46 | 44, 45 | syl 14 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → (𝑖 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑖 ∈ (ℤ≥‘𝑀))) |
47 | 34, 41, 46 | mpjaodan 788 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → DECID
𝑖 ∈ 𝐴) |
48 | 5, 15, 16, 18, 19, 23, 47, 33 | sumrbdc 11320 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
49 | 48 | biimpd 143 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
50 | 49 | expimpd 361 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
51 | 1, 50 | syl5 32 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
52 | 51 | rexlimdva 2583 |
. . . . . 6
⊢ (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
53 | | uzssz 9485 |
. . . . . . . . . . . . . 14
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
54 | 22, 53 | sstrdi 3154 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ⊆ ℤ) |
55 | 54 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝐴 ⊆ ℤ) |
56 | | 1zzd 9218 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 1 ∈
ℤ) |
57 | | simplr 520 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑚 ∈ ℕ) |
58 | 57 | nnzd 9312 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑚 ∈ ℤ) |
59 | 56, 58 | fzfigd 10366 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (1...𝑚) ∈ Fin) |
60 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
61 | | f1oeng 6723 |
. . . . . . . . . . . . . . 15
⊢
(((1...𝑚) ∈ Fin
∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (1...𝑚) ≈ 𝐴) |
62 | 59, 60, 61 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (1...𝑚) ≈ 𝐴) |
63 | 62 | ensymd 6749 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝐴 ≈ (1...𝑚)) |
64 | | enfii 6840 |
. . . . . . . . . . . . 13
⊢
(((1...𝑚) ∈ Fin
∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin) |
65 | 59, 63, 64 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝐴 ∈ Fin) |
66 | | zfz1iso 10754 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
67 | 55, 65, 66 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
68 | | simpr 109 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖 ∈ 𝐴) → 𝑖 ∈ 𝐴) |
69 | 8 | ad3antrrr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
70 | 68, 69, 14 | sylc 62 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ) |
71 | 31 | adantlr 469 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → DECID
𝑖 ∈ 𝐴) |
72 | 71 | adantlr 469 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → DECID
𝑖 ∈ 𝐴) |
73 | | breq1 3985 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑗 ≤ (♯‘𝐴))) |
74 | | fveq2 5486 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑗 → (𝑓‘𝑛) = (𝑓‘𝑗)) |
75 | 74 | csbeq1d 3052 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑗 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) |
76 | | csbco 3055 |
. . . . . . . . . . . . . . . . . 18
⊢
⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 |
77 | 75, 76 | eqtr4di 2217 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵) |
78 | 73, 77 | ifbieq1d 3542 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵, 0)) |
79 | 78 | cbvmptv 4078 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵, 0)) |
80 | | eqid 2165 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ ↦ if(𝑗 ≤ 𝑚, ⦋(𝑔‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵, 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ 𝑚, ⦋(𝑔‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵, 0)) |
81 | | simplr 520 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ) |
82 | 17 | ad2antrr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑀 ∈ ℤ) |
83 | 22 | ad2antrr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
84 | 60 | adantrr 471 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
85 | | simprr 522 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
86 | 5, 70, 72, 79, 80, 81, 82, 83, 84, 85 | summodclem2a 11322 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
87 | 59 | adantrr 471 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (1...𝑚) ∈ Fin) |
88 | 87, 84 | fihasheqf1od 10703 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (♯‘(1...𝑚)) = (♯‘𝐴)) |
89 | 81 | nnnn0d 9167 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ0) |
90 | | hashfz1 10696 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℕ0
→ (♯‘(1...𝑚)) = 𝑚) |
91 | 89, 90 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (♯‘(1...𝑚)) = 𝑚) |
92 | 88, 91 | eqtr3d 2200 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (♯‘𝐴) = 𝑚) |
93 | 92 | breq2d 3994 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (𝑛 ≤ (♯‘𝐴) ↔ 𝑛 ≤ 𝑚)) |
94 | 93 | ifbid 3541 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) |
95 | 94 | mpteq2dv 4073 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0))) |
96 | 95 | seqeq3d 10388 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))) |
97 | 96 | fveq1d 5488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
98 | 86, 97 | breqtrd 4008 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
99 | 98 | expr 373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) |
100 | 99 | exlimdv 1807 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) |
101 | 67, 100 | mpd 13 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
102 | | breq2 3986 |
. . . . . . . . . 10
⊢ (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) |
103 | 101, 102 | syl5ibrcom 156 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
104 | 103 | expimpd 361 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
105 | 104 | exlimdv 1807 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
106 | 105 | rexlimdva 2583 |
. . . . . 6
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
107 | 52, 106 | jaod 707 |
. . . . 5
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
108 | 17 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → 𝑀 ∈ ℤ) |
109 | 22 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
110 | | eleq1w 2227 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑗 → (𝑥 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) |
111 | 110 | dcbid 828 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑗 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑗 ∈ 𝐴)) |
112 | 111 | cbvralv 2692 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
(ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
113 | 26, 112 | sylib 121 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
114 | 113 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
115 | | simpr 109 |
. . . . . . . 8
⊢ ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) |
116 | | fveq2 5486 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑀)) |
117 | 116 | sseq2d 3172 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑀))) |
118 | 116 | raleqdv 2667 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴)) |
119 | | seqeq1 10383 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) = seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)))) |
120 | 119 | breq1d 3992 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
121 | 117, 118,
120 | 3anbi123d 1302 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥))) |
122 | 121 | rspcev 2830 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ (𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
123 | 108, 109,
114, 115, 122 | syl13anc 1230 |
. . . . . . 7
⊢ ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
124 | 123 | orcd 723 |
. . . . . 6
⊢ ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
125 | 124 | ex 114 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))))) |
126 | 107, 125 | impbid 128 |
. . . 4
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
127 | | eluzelz 9475 |
. . . . . . . 8
⊢ (𝑎 ∈
(ℤ≥‘𝑀) → 𝑎 ∈ ℤ) |
128 | | simpr 109 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
129 | 8 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑎 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
130 | | nfcsb1v 3078 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑎 / 𝑘⦌𝐵 |
131 | 130 | nfel1 2319 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑎 / 𝑘⦌𝐵 ∈ ℂ |
132 | | csbeq1a 3054 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑎 → 𝐵 = ⦋𝑎 / 𝑘⦌𝐵) |
133 | 132 | eleq1d 2235 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑎 → (𝐵 ∈ ℂ ↔ ⦋𝑎 / 𝑘⦌𝐵 ∈ ℂ)) |
134 | 131, 133 | rspc 2824 |
. . . . . . . . . 10
⊢ (𝑎 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑎 / 𝑘⦌𝐵 ∈ ℂ)) |
135 | 128, 129,
134 | sylc 62 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑎 ∈ 𝐴) → ⦋𝑎 / 𝑘⦌𝐵 ∈ ℂ) |
136 | | 0cnd 7892 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑎 ∈ 𝐴) → 0 ∈ ℂ) |
137 | | eleq1w 2227 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) |
138 | 137 | dcbid 828 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑎 ∈ 𝐴)) |
139 | 138 | cbvralv 2692 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
(ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴 ↔ ∀𝑎 ∈ (ℤ≥‘𝑀)DECID 𝑎 ∈ 𝐴) |
140 | 26, 139 | sylib 121 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑎 ∈ (ℤ≥‘𝑀)DECID 𝑎 ∈ 𝐴) |
141 | 140 | r19.21bi 2554 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → DECID
𝑎 ∈ 𝐴) |
142 | 135, 136,
141 | ifcldadc 3549 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → if(𝑎 ∈ 𝐴, ⦋𝑎 / 𝑘⦌𝐵, 0) ∈ ℂ) |
143 | | eleq1w 2227 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑎 → (𝑛 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) |
144 | | csbeq1 3048 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑎 → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑎 / 𝑘⦌𝐵) |
145 | 143, 144 | ifbieq1d 3542 |
. . . . . . . . 9
⊢ (𝑛 = 𝑎 → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) = if(𝑎 ∈ 𝐴, ⦋𝑎 / 𝑘⦌𝐵, 0)) |
146 | | eqid 2165 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
147 | 145, 146 | fvmptg 5562 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℤ ∧ if(𝑎 ∈ 𝐴, ⦋𝑎 / 𝑘⦌𝐵, 0) ∈ ℂ) → ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))‘𝑎) = if(𝑎 ∈ 𝐴, ⦋𝑎 / 𝑘⦌𝐵, 0)) |
148 | 127, 142,
147 | syl2an2 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))‘𝑎) = if(𝑎 ∈ 𝐴, ⦋𝑎 / 𝑘⦌𝐵, 0)) |
149 | 148, 142 | eqeltrd 2243 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))‘𝑎) ∈ ℂ) |
150 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑗 ∈ (ℤ≥‘𝑀)) |
151 | 53, 150 | sselid 3140 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑗 ∈ ℤ) |
152 | | vex 2729 |
. . . . . . . . . 10
⊢ 𝑗 ∈ V |
153 | | nfv 1516 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑗 ∈ 𝐴 |
154 | | nfcsb1v 3078 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
155 | | nfcv 2308 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘0 |
156 | 153, 154,
155 | nfif 3548 |
. . . . . . . . . 10
⊢
Ⅎ𝑘if(𝑗 ∈ 𝐴, ⦋𝑗 / 𝑘⦌𝐵, 0) |
157 | | eleq1w 2227 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) |
158 | | csbeq1a 3054 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) |
159 | 157, 158 | ifbieq1d 3542 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → if(𝑘 ∈ 𝐴, 𝐵, 0) = if(𝑗 ∈ 𝐴, ⦋𝑗 / 𝑘⦌𝐵, 0)) |
160 | 152, 156,
159 | csbief 3089 |
. . . . . . . . 9
⊢
⦋𝑗 /
𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0) = if(𝑗 ∈ 𝐴, ⦋𝑗 / 𝑘⦌𝐵, 0) |
161 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) |
162 | 8 | ad2antrr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ 𝑗 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
163 | 154 | nfel1 2319 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
164 | 158 | eleq1d 2235 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
165 | 163, 164 | rspc 2824 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
166 | 161, 162,
165 | sylc 62 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
167 | | 0cnd 7892 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑗 ∈ 𝐴) → 0 ∈ ℂ) |
168 | 113 | r19.21bi 2554 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → DECID
𝑗 ∈ 𝐴) |
169 | 166, 167,
168 | ifcldadc 3549 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → if(𝑗 ∈ 𝐴, ⦋𝑗 / 𝑘⦌𝐵, 0) ∈ ℂ) |
170 | 160, 169 | eqeltrid 2253 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
171 | | nfcv 2308 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛if(𝑘 ∈ 𝐴, 𝐵, 0) |
172 | | nfv 1516 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘 𝑛 ∈ 𝐴 |
173 | | nfcsb1v 3078 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐵 |
174 | 172, 173,
155 | nfif 3548 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) |
175 | | eleq1w 2227 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → (𝑘 ∈ 𝐴 ↔ 𝑛 ∈ 𝐴)) |
176 | | csbeq1a 3054 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → 𝐵 = ⦋𝑛 / 𝑘⦌𝐵) |
177 | 175, 176 | ifbieq1d 3542 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → if(𝑘 ∈ 𝐴, 𝐵, 0) = if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
178 | 171, 174,
177 | cbvmpt 4077 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
179 | 178 | eqcomi 2169 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
180 | 179 | fvmpts 5564 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℤ ∧
⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) → ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))‘𝑗) = ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0)) |
181 | 151, 170,
180 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))‘𝑗) = ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0)) |
182 | 150, 21 | eleqtrrdi 2260 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑗 ∈ 𝑍) |
183 | | zisum.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
184 | 183 | ralrimiva 2539 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
185 | 184 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
186 | | nfcsb1v 3078 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0) |
187 | 186 | nfeq2 2320 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝐹‘𝑗) = ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0) |
188 | | fveq2 5486 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
189 | | csbeq1a 3054 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → if(𝑘 ∈ 𝐴, 𝐵, 0) = ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0)) |
190 | 188, 189 | eqeq12d 2180 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0) ↔ (𝐹‘𝑗) = ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0))) |
191 | 187, 190 | rspc 2824 |
. . . . . . . 8
⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0) → (𝐹‘𝑗) = ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0))) |
192 | 182, 185,
191 | sylc 62 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑗) = ⦋𝑗 / 𝑘⦌if(𝑘 ∈ 𝐴, 𝐵, 0)) |
193 | 181, 192 | eqtr4d 2201 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))‘𝑗) = (𝐹‘𝑗)) |
194 | | addcl 7878 |
. . . . . . 7
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ) |
195 | 194 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 + 𝑏) ∈ ℂ) |
196 | 17, 149, 193, 195 | seq3feq 10407 |
. . . . 5
⊢ (𝜑 → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) = seq𝑀( + , 𝐹)) |
197 | 196 | breq1d 3992 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , 𝐹) ⇝ 𝑥)) |
198 | 126, 197 | bitrd 187 |
. . 3
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) ↔ seq𝑀( + , 𝐹) ⇝ 𝑥)) |
199 | 198 | iotabidv 5174 |
. 2
⊢ (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) = (℩𝑥seq𝑀( + , 𝐹) ⇝ 𝑥)) |
200 | | df-sumdc 11295 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
201 | | df-fv 5196 |
. 2
⊢ ( ⇝
‘seq𝑀( + , 𝐹)) = (℩𝑥seq𝑀( + , 𝐹) ⇝ 𝑥) |
202 | 199, 200,
201 | 3eqtr4g 2224 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) |