ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsumdc GIF version

Theorem zsumdc 11185
Description: Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
zisum.1 𝑍 = (ℤ𝑀)
zisum.2 (𝜑𝑀 ∈ ℤ)
zisum.3 (𝜑𝐴𝑍)
zisum.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
zisum.dc (𝜑 → ∀𝑥𝑍 DECID 𝑥𝐴)
zisum.5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
zsumdc (𝜑 → Σ𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
Distinct variable groups:   𝐴,𝑘,𝑥   𝑥,𝐵   𝑘,𝐹,𝑥   𝑥,𝑀   𝑘,𝑍,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑘)   𝑀(𝑘)

Proof of Theorem zsumdc
Dummy variables 𝑎 𝑏 𝑗 𝑛 𝑓 𝑔 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 980 . . . . . . . 8 ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
2 eleq1w 2201 . . . . . . . . . . . . 13 (𝑛 = 𝑖 → (𝑛𝐴𝑖𝐴))
3 csbeq1 3010 . . . . . . . . . . . . 13 (𝑛 = 𝑖𝑛 / 𝑘𝐵 = 𝑖 / 𝑘𝐵)
42, 3ifbieq1d 3499 . . . . . . . . . . . 12 (𝑛 = 𝑖 → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑖𝐴, 𝑖 / 𝑘𝐵, 0))
54cbvmptv 4032 . . . . . . . . . . 11 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑖 ∈ ℤ ↦ if(𝑖𝐴, 𝑖 / 𝑘𝐵, 0))
6 simpr 109 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖𝐴) → 𝑖𝐴)
7 zisum.5 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
87ralrimiva 2508 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
98ad3antrrr 484 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖𝐴) → ∀𝑘𝐴 𝐵 ∈ ℂ)
10 nfcsb1v 3040 . . . . . . . . . . . . . 14 𝑘𝑖 / 𝑘𝐵
1110nfel1 2293 . . . . . . . . . . . . 13 𝑘𝑖 / 𝑘𝐵 ∈ ℂ
12 csbeq1a 3016 . . . . . . . . . . . . . 14 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
1312eleq1d 2209 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ 𝑖 / 𝑘𝐵 ∈ ℂ))
1411, 13rspc 2787 . . . . . . . . . . . 12 (𝑖𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑖 / 𝑘𝐵 ∈ ℂ))
156, 9, 14sylc 62 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
16 simplr 520 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝑚 ∈ ℤ)
17 zisum.2 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
1817ad2antrr 480 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝑀 ∈ ℤ)
19 simpr 109 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝐴 ⊆ (ℤ𝑚))
20 zisum.3 . . . . . . . . . . . . 13 (𝜑𝐴𝑍)
21 zisum.1 . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
2220, 21sseqtrdi 3150 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (ℤ𝑀))
2322ad2antrr 480 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝐴 ⊆ (ℤ𝑀))
24 zisum.dc . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝑍 DECID 𝑥𝐴)
2521raleqi 2633 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝑍 DECID 𝑥𝐴 ↔ ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
2624, 25sylib 121 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
27 eleq1w 2201 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑖 → (𝑥𝐴𝑖𝐴))
2827dcbid 824 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑖 → (DECID 𝑥𝐴DECID 𝑖𝐴))
2928cbvralv 2657 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴 ↔ ∀𝑖 ∈ (ℤ𝑀)DECID 𝑖𝐴)
3026, 29sylib 121 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑖 ∈ (ℤ𝑀)DECID 𝑖𝐴)
3130r19.21bi 2523 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → DECID 𝑖𝐴)
3231adantlr 469 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℤ) ∧ 𝑖 ∈ (ℤ𝑀)) → DECID 𝑖𝐴)
3332adantlr 469 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖 ∈ (ℤ𝑀)) → DECID 𝑖𝐴)
3433adantlr 469 . . . . . . . . . . . 12 (((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖 ∈ (ℤ𝑚)) ∧ 𝑖 ∈ (ℤ𝑀)) → DECID 𝑖𝐴)
35 simp-4l 531 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖 ∈ (ℤ𝑚)) ∧ ¬ 𝑖 ∈ (ℤ𝑀)) → 𝜑)
36 simpr 109 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖 ∈ (ℤ𝑚)) ∧ ¬ 𝑖 ∈ (ℤ𝑀)) → ¬ 𝑖 ∈ (ℤ𝑀))
3722ssneld 3104 . . . . . . . . . . . . . . 15 (𝜑 → (¬ 𝑖 ∈ (ℤ𝑀) → ¬ 𝑖𝐴))
3835, 36, 37sylc 62 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖 ∈ (ℤ𝑚)) ∧ ¬ 𝑖 ∈ (ℤ𝑀)) → ¬ 𝑖𝐴)
3938olcd 724 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖 ∈ (ℤ𝑚)) ∧ ¬ 𝑖 ∈ (ℤ𝑀)) → (𝑖𝐴 ∨ ¬ 𝑖𝐴))
40 df-dc 821 . . . . . . . . . . . . 13 (DECID 𝑖𝐴 ↔ (𝑖𝐴 ∨ ¬ 𝑖𝐴))
4139, 40sylibr 133 . . . . . . . . . . . 12 (((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖 ∈ (ℤ𝑚)) ∧ ¬ 𝑖 ∈ (ℤ𝑀)) → DECID 𝑖𝐴)
42 eluzelz 9359 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ𝑚) → 𝑖 ∈ ℤ)
43 eluzdc 9431 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) → DECID 𝑖 ∈ (ℤ𝑀))
4418, 42, 43syl2an 287 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖 ∈ (ℤ𝑚)) → DECID 𝑖 ∈ (ℤ𝑀))
45 exmiddc 822 . . . . . . . . . . . . 13 (DECID 𝑖 ∈ (ℤ𝑀) → (𝑖 ∈ (ℤ𝑀) ∨ ¬ 𝑖 ∈ (ℤ𝑀)))
4644, 45syl 14 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖 ∈ (ℤ𝑚)) → (𝑖 ∈ (ℤ𝑀) ∨ ¬ 𝑖 ∈ (ℤ𝑀)))
4734, 41, 46mpjaodan 788 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖 ∈ (ℤ𝑚)) → DECID 𝑖𝐴)
485, 15, 16, 18, 19, 23, 47, 33sumrbdc 11180 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
4948biimpd 143 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
5049expimpd 361 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
511, 50syl5 32 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
5251rexlimdva 2552 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
53 uzssz 9369 . . . . . . . . . . . . . 14 (ℤ𝑀) ⊆ ℤ
5422, 53sstrdi 3114 . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℤ)
5554ad2antrr 480 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ⊆ ℤ)
56 1zzd 9105 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 1 ∈ ℤ)
57 simplr 520 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑚 ∈ ℕ)
5857nnzd 9196 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑚 ∈ ℤ)
5956, 58fzfigd 10235 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ∈ Fin)
60 simpr 109 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑓:(1...𝑚)–1-1-onto𝐴)
61 f1oeng 6659 . . . . . . . . . . . . . . 15 (((1...𝑚) ∈ Fin ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ≈ 𝐴)
6259, 60, 61syl2anc 409 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ≈ 𝐴)
6362ensymd 6685 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ≈ (1...𝑚))
64 enfii 6776 . . . . . . . . . . . . 13 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
6559, 63, 64syl2anc 409 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ∈ Fin)
66 zfz1iso 10616 . . . . . . . . . . . 12 ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
6755, 65, 66syl2anc 409 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
68 simpr 109 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖𝐴) → 𝑖𝐴)
698ad3antrrr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖𝐴) → ∀𝑘𝐴 𝐵 ∈ ℂ)
7068, 69, 14sylc 62 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
7131adantlr 469 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ) ∧ 𝑖 ∈ (ℤ𝑀)) → DECID 𝑖𝐴)
7271adantlr 469 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖 ∈ (ℤ𝑀)) → DECID 𝑖𝐴)
73 breq1 3940 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑗 ≤ (♯‘𝐴)))
74 fveq2 5429 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
7574csbeq1d 3014 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵)
76 csbco 3017 . . . . . . . . . . . . . . . . . 18 (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵
7775, 76eqtr4di 2191 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵)
7873, 77ifbieq1d 3499 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵, 0))
7978cbvmptv 4032 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵, 0))
80 eqid 2140 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ ↦ if(𝑗𝑚, (𝑔𝑗) / 𝑖𝑖 / 𝑘𝐵, 0)) = (𝑗 ∈ ℕ ↦ if(𝑗𝑚, (𝑔𝑗) / 𝑖𝑖 / 𝑘𝐵, 0))
81 simplr 520 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
8217ad2antrr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑀 ∈ ℤ)
8322ad2antrr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑀))
8460adantrr 471 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
85 simprr 522 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
865, 70, 72, 79, 80, 81, 82, 83, 84, 85summodclem2a 11182 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
8759adantrr 471 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (1...𝑚) ∈ Fin)
8887, 84fihasheqf1od 10568 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (♯‘(1...𝑚)) = (♯‘𝐴))
8981nnnn0d 9054 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ0)
90 hashfz1 10561 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ0 → (♯‘(1...𝑚)) = 𝑚)
9189, 90syl 14 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (♯‘(1...𝑚)) = 𝑚)
9288, 91eqtr3d 2175 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (♯‘𝐴) = 𝑚)
9392breq2d 3949 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (𝑛 ≤ (♯‘𝐴) ↔ 𝑛𝑚))
9493ifbid 3498 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))
9594mpteq2dv 4027 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))
9695seqeq3d 10257 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))))
9796fveq1d 5431 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
9886, 97breqtrd 3962 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
9998expr 373 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
10099exlimdv 1792 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
10167, 100mpd 13 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
102 breq2 3941 . . . . . . . . . 10 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
103101, 102syl5ibrcom 156 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
104103expimpd 361 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
105104exlimdv 1792 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
106105rexlimdva 2552 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
10752, 106jaod 707 . . . . 5 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
10817adantr 274 . . . . . . . 8 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → 𝑀 ∈ ℤ)
10922adantr 274 . . . . . . . 8 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → 𝐴 ⊆ (ℤ𝑀))
110 eleq1w 2201 . . . . . . . . . . . 12 (𝑥 = 𝑗 → (𝑥𝐴𝑗𝐴))
111110dcbid 824 . . . . . . . . . . 11 (𝑥 = 𝑗 → (DECID 𝑥𝐴DECID 𝑗𝐴))
112111cbvralv 2657 . . . . . . . . . 10 (∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴 ↔ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
11326, 112sylib 121 . . . . . . . . 9 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
114113adantr 274 . . . . . . . 8 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
115 simpr 109 . . . . . . . 8 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
116 fveq2 5429 . . . . . . . . . . 11 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
117116sseq2d 3132 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑀)))
118116raleqdv 2635 . . . . . . . . . 10 (𝑚 = 𝑀 → (∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ↔ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴))
119 seqeq1 10252 . . . . . . . . . . 11 (𝑚 = 𝑀 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))))
120119breq1d 3947 . . . . . . . . . 10 (𝑚 = 𝑀 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
121117, 118, 1203anbi123d 1291 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)))
122121rspcev 2793 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
123108, 109, 114, 115, 122syl13anc 1219 . . . . . . 7 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
124123orcd 723 . . . . . 6 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
125124ex 114 . . . . 5 (𝜑 → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))))
126107, 125impbid 128 . . . 4 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))) ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
127 eluzelz 9359 . . . . . . . 8 (𝑎 ∈ (ℤ𝑀) → 𝑎 ∈ ℤ)
128 simpr 109 . . . . . . . . . 10 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑎𝐴) → 𝑎𝐴)
1298ad2antrr 480 . . . . . . . . . 10 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑎𝐴) → ∀𝑘𝐴 𝐵 ∈ ℂ)
130 nfcsb1v 3040 . . . . . . . . . . . 12 𝑘𝑎 / 𝑘𝐵
131130nfel1 2293 . . . . . . . . . . 11 𝑘𝑎 / 𝑘𝐵 ∈ ℂ
132 csbeq1a 3016 . . . . . . . . . . . 12 (𝑘 = 𝑎𝐵 = 𝑎 / 𝑘𝐵)
133132eleq1d 2209 . . . . . . . . . . 11 (𝑘 = 𝑎 → (𝐵 ∈ ℂ ↔ 𝑎 / 𝑘𝐵 ∈ ℂ))
134131, 133rspc 2787 . . . . . . . . . 10 (𝑎𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑎 / 𝑘𝐵 ∈ ℂ))
135128, 129, 134sylc 62 . . . . . . . . 9 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑎𝐴) → 𝑎 / 𝑘𝐵 ∈ ℂ)
136 0cnd 7783 . . . . . . . . 9 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐴) → 0 ∈ ℂ)
137 eleq1w 2201 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
138137dcbid 824 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (DECID 𝑥𝐴DECID 𝑎𝐴))
139138cbvralv 2657 . . . . . . . . . . 11 (∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴 ↔ ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
14026, 139sylib 121 . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
141140r19.21bi 2523 . . . . . . . . 9 ((𝜑𝑎 ∈ (ℤ𝑀)) → DECID 𝑎𝐴)
142135, 136, 141ifcldadc 3506 . . . . . . . 8 ((𝜑𝑎 ∈ (ℤ𝑀)) → if(𝑎𝐴, 𝑎 / 𝑘𝐵, 0) ∈ ℂ)
143 eleq1w 2201 . . . . . . . . . 10 (𝑛 = 𝑎 → (𝑛𝐴𝑎𝐴))
144 csbeq1 3010 . . . . . . . . . 10 (𝑛 = 𝑎𝑛 / 𝑘𝐵 = 𝑎 / 𝑘𝐵)
145143, 144ifbieq1d 3499 . . . . . . . . 9 (𝑛 = 𝑎 → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑎𝐴, 𝑎 / 𝑘𝐵, 0))
146 eqid 2140 . . . . . . . . 9 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
147145, 146fvmptg 5505 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ if(𝑎𝐴, 𝑎 / 𝑘𝐵, 0) ∈ ℂ) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑎) = if(𝑎𝐴, 𝑎 / 𝑘𝐵, 0))
148127, 142, 147syl2an2 584 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑎) = if(𝑎𝐴, 𝑎 / 𝑘𝐵, 0))
149148, 142eqeltrd 2217 . . . . . 6 ((𝜑𝑎 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑎) ∈ ℂ)
150 simpr 109 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ (ℤ𝑀))
15153, 150sseldi 3100 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℤ)
152 vex 2692 . . . . . . . . . 10 𝑗 ∈ V
153 nfv 1509 . . . . . . . . . . 11 𝑘 𝑗𝐴
154 nfcsb1v 3040 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
155 nfcv 2282 . . . . . . . . . . 11 𝑘0
156153, 154, 155nfif 3505 . . . . . . . . . 10 𝑘if(𝑗𝐴, 𝑗 / 𝑘𝐵, 0)
157 eleq1w 2201 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
158 csbeq1a 3016 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
159157, 158ifbieq1d 3499 . . . . . . . . . 10 (𝑘 = 𝑗 → if(𝑘𝐴, 𝐵, 0) = if(𝑗𝐴, 𝑗 / 𝑘𝐵, 0))
160152, 156, 159csbief 3049 . . . . . . . . 9 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0) = if(𝑗𝐴, 𝑗 / 𝑘𝐵, 0)
161 simpr 109 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝑀)) ∧ 𝑗𝐴) → 𝑗𝐴)
1628ad2antrr 480 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝑀)) ∧ 𝑗𝐴) → ∀𝑘𝐴 𝐵 ∈ ℂ)
163154nfel1 2293 . . . . . . . . . . . 12 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
164158eleq1d 2209 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
165163, 164rspc 2787 . . . . . . . . . . 11 (𝑗𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑗 / 𝑘𝐵 ∈ ℂ))
166161, 162, 165sylc 62 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑀)) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
167 0cnd 7783 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑀)) ∧ ¬ 𝑗𝐴) → 0 ∈ ℂ)
168113r19.21bi 2523 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → DECID 𝑗𝐴)
169166, 167, 168ifcldadc 3506 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → if(𝑗𝐴, 𝑗 / 𝑘𝐵, 0) ∈ ℂ)
170160, 169eqeltrid 2227 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
171 nfcv 2282 . . . . . . . . . . 11 𝑛if(𝑘𝐴, 𝐵, 0)
172 nfv 1509 . . . . . . . . . . . 12 𝑘 𝑛𝐴
173 nfcsb1v 3040 . . . . . . . . . . . 12 𝑘𝑛 / 𝑘𝐵
174172, 173, 155nfif 3505 . . . . . . . . . . 11 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
175 eleq1w 2201 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑘𝐴𝑛𝐴))
176 csbeq1a 3016 . . . . . . . . . . . 12 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
177175, 176ifbieq1d 3499 . . . . . . . . . . 11 (𝑘 = 𝑛 → if(𝑘𝐴, 𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
178171, 174, 177cbvmpt 4031 . . . . . . . . . 10 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
179178eqcomi 2144 . . . . . . . . 9 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
180179fvmpts 5507 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0) ∈ ℂ) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
181151, 170, 180syl2anc 409 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
182150, 21eleqtrrdi 2234 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗𝑍)
183 zisum.4 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
184183ralrimiva 2508 . . . . . . . . 9 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
185184adantr 274 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
186 nfcsb1v 3040 . . . . . . . . . 10 𝑘𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)
187186nfeq2 2294 . . . . . . . . 9 𝑘(𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)
188 fveq2 5429 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
189 csbeq1a 3016 . . . . . . . . . 10 (𝑘 = 𝑗 → if(𝑘𝐴, 𝐵, 0) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
190188, 189eqeq12d 2155 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐹𝑘) = if(𝑘𝐴, 𝐵, 0) ↔ (𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)))
191187, 190rspc 2787 . . . . . . . 8 (𝑗𝑍 → (∀𝑘𝑍 (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0) → (𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)))
192182, 185, 191sylc 62 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
193181, 192eqtr4d 2176 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑗) = (𝐹𝑗))
194 addcl 7769 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ)
195194adantl 275 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 + 𝑏) ∈ ℂ)
19617, 149, 193, 195seq3feq 10276 . . . . 5 (𝜑 → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = seq𝑀( + , 𝐹))
197196breq1d 3947 . . . 4 (𝜑 → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , 𝐹) ⇝ 𝑥))
198126, 197bitrd 187 . . 3 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))) ↔ seq𝑀( + , 𝐹) ⇝ 𝑥))
199198iotabidv 5117 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))) = (℩𝑥seq𝑀( + , 𝐹) ⇝ 𝑥))
200 df-sumdc 11155 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
201 df-fv 5139 . 2 ( ⇝ ‘seq𝑀( + , 𝐹)) = (℩𝑥seq𝑀( + , 𝐹) ⇝ 𝑥)
202199, 200, 2013eqtr4g 2198 1 (𝜑 → Σ𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 820  w3a 963   = wceq 1332  wex 1469  wcel 1481  wral 2417  wrex 2418  csb 3007  wss 3076  ifcif 3479   class class class wbr 3937  cmpt 3997  cio 5094  1-1-ontowf1o 5130  cfv 5131   Isom wiso 5132  (class class class)co 5782  cen 6640  Fincfn 6642  cc 7642  0cc0 7644  1c1 7645   + caddc 7647   < clt 7824  cle 7825  cn 8744  0cn0 9001  cz 9078  cuz 9350  ...cfz 9821  seqcseq 10249  chash 10553  cli 11079  Σcsu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  isum  11186  sum0  11189  isumz  11190  isumss  11192  fsumsersdc  11196
  Copyright terms: Public domain W3C validator