ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq1 GIF version

Theorem sumeq1 11861
Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
sumeq1 (𝐴 = 𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)

Proof of Theorem sumeq1
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3247 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐵 ⊆ (ℤ𝑚)))
2 eleq2 2293 . . . . . . . 8 (𝐴 = 𝐵 → (𝑗𝐴𝑗𝐵))
32dcbid 843 . . . . . . 7 (𝐴 = 𝐵 → (DECID 𝑗𝐴DECID 𝑗𝐵))
43ralbidv 2530 . . . . . 6 (𝐴 = 𝐵 → (∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ↔ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐵))
5 simpl 109 . . . . . . . . . . 11 ((𝐴 = 𝐵𝑛 ∈ ℤ) → 𝐴 = 𝐵)
65eleq2d 2299 . . . . . . . . . 10 ((𝐴 = 𝐵𝑛 ∈ ℤ) → (𝑛𝐴𝑛𝐵))
76ifbid 3624 . . . . . . . . 9 ((𝐴 = 𝐵𝑛 ∈ ℤ) → if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0) = if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))
87mpteq2dva 4173 . . . . . . . 8 (𝐴 = 𝐵 → (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0)))
98seqeq3d 10672 . . . . . . 7 (𝐴 = 𝐵 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))))
109breq1d 4092 . . . . . 6 (𝐴 = 𝐵 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
111, 4, 103anbi123d 1346 . . . . 5 (𝐴 = 𝐵 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ↔ (𝐵 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
1211rexbidv 2531 . . . 4 (𝐴 = 𝐵 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
13 f1oeq3 5561 . . . . . . 7 (𝐴 = 𝐵 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)–1-1-onto𝐵))
1413anbi1d 465 . . . . . 6 (𝐴 = 𝐵 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
1514exbidv 1871 . . . . 5 (𝐴 = 𝐵 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
1615rexbidv 2531 . . . 4 (𝐴 = 𝐵 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
1712, 16orbi12d 798 . . 3 (𝐴 = 𝐵 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))))
1817iotabidv 5300 . 2 (𝐴 = 𝐵 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))))
19 df-sumdc 11860 . 2 Σ𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
20 df-sumdc 11860 . 2 Σ𝑘𝐵 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
2118, 19, 203eqtr4g 2287 1 (𝐴 = 𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  csb 3124  wss 3197  ifcif 3602   class class class wbr 4082  cmpt 4144  cio 5275  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  0cc0 7995  1c1 7996   + caddc 7998  cle 8178  cn 9106  cz 9442  cuz 9718  ...cfz 10200  seqcseq 10664  cli 11784  Σcsu 11859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-seqfrec 10665  df-sumdc 11860
This theorem is referenced by:  sumeq1i  11869  sumeq1d  11872  isumz  11895  fsumadd  11912  fsum2d  11941  fisumrev2  11952  fsummulc2  11954  fsumconst  11960  modfsummod  11964  fsumabs  11971  fsumrelem  11977  fsumiun  11983  fsumcncntop  15235  dvmptfsum  15393
  Copyright terms: Public domain W3C validator