Step | Hyp | Ref
| Expression |
1 | | sseq1 3050 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐵 ⊆ (ℤ≥‘𝑚))) |
2 | | eleq2 2152 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 → (𝑗 ∈ 𝐴 ↔ 𝑗 ∈ 𝐵)) |
3 | 2 | dcbid 787 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑗 ∈ 𝐵)) |
4 | 3 | ralbidv 2381 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐵)) |
5 | | simpl 108 |
. . . . . . . . . . 11
⊢ ((𝐴 = 𝐵 ∧ 𝑛 ∈ ℤ) → 𝐴 = 𝐵) |
6 | 5 | eleq2d 2158 |
. . . . . . . . . 10
⊢ ((𝐴 = 𝐵 ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵)) |
7 | 6 | ifbid 3418 |
. . . . . . . . 9
⊢ ((𝐴 = 𝐵 ∧ 𝑛 ∈ ℤ) → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0) = if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐶, 0)) |
8 | 7 | mpteq2dva 3936 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 → (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐶, 0))) |
9 | | iseqeq3 9923 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐶, 0)) → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ)) |
10 | 8, 9 | syl 14 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ)) |
11 | 10 | breq1d 3863 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥)) |
12 | 1, 4, 11 | 3anbi123d 1249 |
. . . . 5
⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥) ↔ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥))) |
13 | 12 | rexbidv 2382 |
. . . 4
⊢ (𝐴 = 𝐵 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥))) |
14 | | f1oeq3 5261 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑚)–1-1-onto→𝐵)) |
15 | 14 | anbi1d 454 |
. . . . . 6
⊢ (𝐴 = 𝐵 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚)))) |
16 | 15 | exbidv 1754 |
. . . . 5
⊢ (𝐴 = 𝐵 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚)))) |
17 | 16 | rexbidv 2382 |
. . . 4
⊢ (𝐴 = 𝐵 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚)))) |
18 | 13, 17 | orbi12d 743 |
. . 3
⊢ (𝐴 = 𝐵 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚))))) |
19 | 18 | iotabidv 5016 |
. 2
⊢ (𝐴 = 𝐵 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚))))) |
20 | | df-isum 10806 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚)))) |
21 | | df-isum 10806 |
. 2
⊢
Σ𝑘 ∈
𝐵 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐵, ⦋𝑛 / 𝑘⦌𝐶, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)), ℂ)‘𝑚)))) |
22 | 19, 20, 21 | 3eqtr4g 2146 |
1
⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |