ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq1 GIF version

Theorem sumeq1 11498
Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
sumeq1 (𝐴 = 𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)

Proof of Theorem sumeq1
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3202 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐵 ⊆ (ℤ𝑚)))
2 eleq2 2257 . . . . . . . 8 (𝐴 = 𝐵 → (𝑗𝐴𝑗𝐵))
32dcbid 839 . . . . . . 7 (𝐴 = 𝐵 → (DECID 𝑗𝐴DECID 𝑗𝐵))
43ralbidv 2494 . . . . . 6 (𝐴 = 𝐵 → (∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ↔ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐵))
5 simpl 109 . . . . . . . . . . 11 ((𝐴 = 𝐵𝑛 ∈ ℤ) → 𝐴 = 𝐵)
65eleq2d 2263 . . . . . . . . . 10 ((𝐴 = 𝐵𝑛 ∈ ℤ) → (𝑛𝐴𝑛𝐵))
76ifbid 3578 . . . . . . . . 9 ((𝐴 = 𝐵𝑛 ∈ ℤ) → if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0) = if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))
87mpteq2dva 4119 . . . . . . . 8 (𝐴 = 𝐵 → (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0)))
98seqeq3d 10526 . . . . . . 7 (𝐴 = 𝐵 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))))
109breq1d 4039 . . . . . 6 (𝐴 = 𝐵 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
111, 4, 103anbi123d 1323 . . . . 5 (𝐴 = 𝐵 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ↔ (𝐵 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
1211rexbidv 2495 . . . 4 (𝐴 = 𝐵 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
13 f1oeq3 5490 . . . . . . 7 (𝐴 = 𝐵 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)–1-1-onto𝐵))
1413anbi1d 465 . . . . . 6 (𝐴 = 𝐵 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
1514exbidv 1836 . . . . 5 (𝐴 = 𝐵 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
1615rexbidv 2495 . . . 4 (𝐴 = 𝐵 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
1712, 16orbi12d 794 . . 3 (𝐴 = 𝐵 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))))
1817iotabidv 5237 . 2 (𝐴 = 𝐵 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))))
19 df-sumdc 11497 . 2 Σ𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
20 df-sumdc 11497 . 2 Σ𝑘𝐵 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐵 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
2118, 19, 203eqtr4g 2251 1 (𝐴 = 𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  csb 3080  wss 3153  ifcif 3557   class class class wbr 4029  cmpt 4090  cio 5213  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  0cc0 7872  1c1 7873   + caddc 7875  cle 8055  cn 8982  cz 9317  cuz 9592  ...cfz 10074  seqcseq 10518  cli 11421  Σcsu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-seqfrec 10519  df-sumdc 11497
This theorem is referenced by:  sumeq1i  11506  sumeq1d  11509  isumz  11532  fsumadd  11549  fsum2d  11578  fisumrev2  11589  fsummulc2  11591  fsumconst  11597  modfsummod  11601  fsumabs  11608  fsumrelem  11614  fsumiun  11620  fsumcncntop  14724
  Copyright terms: Public domain W3C validator