| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > geoihalfsum | GIF version | ||
| Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 12016. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 12018 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.) |
| Ref | Expression |
|---|---|
| geoihalfsum | ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9169 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ (𝑘 ∈ ℕ → 2 ∈ ℂ) |
| 3 | 2ap0 9191 | . . . . 5 ⊢ 2 # 0 | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ (𝑘 ∈ ℕ → 2 # 0) |
| 5 | nnz 9453 | . . . 4 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℤ) | |
| 6 | 2, 4, 5 | exprecapd 10890 | . . 3 ⊢ (𝑘 ∈ ℕ → ((1 / 2)↑𝑘) = (1 / (2↑𝑘))) |
| 7 | 6 | sumeq2i 11861 | . 2 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) |
| 8 | halfcn 9313 | . . . 4 ⊢ (1 / 2) ∈ ℂ | |
| 9 | halfre 9312 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
| 10 | halfge0 9315 | . . . . . 6 ⊢ 0 ≤ (1 / 2) | |
| 11 | absid 11568 | . . . . . 6 ⊢ (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2)) | |
| 12 | 9, 10, 11 | mp2an 426 | . . . . 5 ⊢ (abs‘(1 / 2)) = (1 / 2) |
| 13 | halflt1 9316 | . . . . 5 ⊢ (1 / 2) < 1 | |
| 14 | 12, 13 | eqbrtri 4103 | . . . 4 ⊢ (abs‘(1 / 2)) < 1 |
| 15 | geoisum1 12016 | . . . 4 ⊢ (((1 / 2) ∈ ℂ ∧ (abs‘(1 / 2)) < 1) → Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2)))) | |
| 16 | 8, 14, 15 | mp2an 426 | . . 3 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2))) |
| 17 | 1mhlfehlf 9317 | . . . 4 ⊢ (1 − (1 / 2)) = (1 / 2) | |
| 18 | 17 | oveq2i 6005 | . . 3 ⊢ ((1 / 2) / (1 − (1 / 2))) = ((1 / 2) / (1 / 2)) |
| 19 | ax-1cn 8080 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 20 | 1ap0 8725 | . . . . 5 ⊢ 1 # 0 | |
| 21 | 19, 1, 20, 3 | divap0i 8895 | . . . 4 ⊢ (1 / 2) # 0 |
| 22 | 8, 21 | dividapi 8880 | . . 3 ⊢ ((1 / 2) / (1 / 2)) = 1 |
| 23 | 16, 18, 22 | 3eqtri 2254 | . 2 ⊢ Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = 1 |
| 24 | 7, 23 | eqtr3i 2252 | 1 ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5314 (class class class)co 5994 ℂcc 7985 ℝcr 7986 0cc0 7987 1c1 7988 < clt 8169 ≤ cle 8170 − cmin 8305 # cap 8716 / cdiv 8807 ℕcn 9098 2c2 9149 ↑cexp 10747 abscabs 11494 Σcsu 11850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-oadd 6556 df-er 6670 df-en 6878 df-dom 6879 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fzo 10327 df-seqfrec 10657 df-exp 10748 df-ihash 10985 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-sumdc 11851 |
| This theorem is referenced by: trilpolemgt1 16338 trilpolemeq1 16339 redcwlpolemeq1 16353 |
| Copyright terms: Public domain | W3C validator |