ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geoihalfsum GIF version

Theorem geoihalfsum 11689
Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 11686. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 11688 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.)
Assertion
Ref Expression
geoihalfsum Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1

Proof of Theorem geoihalfsum
StepHypRef Expression
1 2cn 9063 . . . . 5 2 ∈ ℂ
21a1i 9 . . . 4 (𝑘 ∈ ℕ → 2 ∈ ℂ)
3 2ap0 9085 . . . . 5 2 # 0
43a1i 9 . . . 4 (𝑘 ∈ ℕ → 2 # 0)
5 nnz 9347 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
62, 4, 5exprecapd 10775 . . 3 (𝑘 ∈ ℕ → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
76sumeq2i 11531 . 2 Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = Σ𝑘 ∈ ℕ (1 / (2↑𝑘))
8 halfcn 9207 . . . 4 (1 / 2) ∈ ℂ
9 halfre 9206 . . . . . 6 (1 / 2) ∈ ℝ
10 halfge0 9209 . . . . . 6 0 ≤ (1 / 2)
11 absid 11238 . . . . . 6 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
129, 10, 11mp2an 426 . . . . 5 (abs‘(1 / 2)) = (1 / 2)
13 halflt1 9210 . . . . 5 (1 / 2) < 1
1412, 13eqbrtri 4055 . . . 4 (abs‘(1 / 2)) < 1
15 geoisum1 11686 . . . 4 (((1 / 2) ∈ ℂ ∧ (abs‘(1 / 2)) < 1) → Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2))))
168, 14, 15mp2an 426 . . 3 Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2)))
17 1mhlfehlf 9211 . . . 4 (1 − (1 / 2)) = (1 / 2)
1817oveq2i 5934 . . 3 ((1 / 2) / (1 − (1 / 2))) = ((1 / 2) / (1 / 2))
19 ax-1cn 7974 . . . . 5 1 ∈ ℂ
20 1ap0 8619 . . . . 5 1 # 0
2119, 1, 20, 3divap0i 8789 . . . 4 (1 / 2) # 0
228, 21dividapi 8774 . . 3 ((1 / 2) / (1 / 2)) = 1
2316, 18, 223eqtri 2221 . 2 Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = 1
247, 23eqtr3i 2219 1 Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5923  cc 7879  cr 7880  0cc0 7881  1c1 7882   < clt 8063  cle 8064  cmin 8199   # cap 8610   / cdiv 8701  cn 8992  2c2 9043  cexp 10632  abscabs 11164  Σcsu 11520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-irdg 6429  df-frec 6450  df-1o 6475  df-oadd 6479  df-er 6593  df-en 6801  df-dom 6802  df-fin 6803  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-fz 10086  df-fzo 10220  df-seqfrec 10542  df-exp 10633  df-ihash 10870  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-clim 11446  df-sumdc 11521
This theorem is referenced by:  trilpolemgt1  15693  trilpolemeq1  15694  redcwlpolemeq1  15708
  Copyright terms: Public domain W3C validator