ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq2 GIF version

Theorem sumeq2 11755
Description: Equality theorem for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
sumeq2 (∀𝑘𝐴 𝐵 = 𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sumeq2
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . . . . . 12 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛𝐴) → 𝑛𝐴)
2 simp-4l 541 . . . . . . . . . . . 12 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛𝐴) → ∀𝑘𝐴 𝐵 = 𝐶)
3 nfcsb1v 3130 . . . . . . . . . . . . . 14 𝑘𝑛 / 𝑘𝐵
4 nfcsb1v 3130 . . . . . . . . . . . . . 14 𝑘𝑛 / 𝑘𝐶
53, 4nfeq 2357 . . . . . . . . . . . . 13 𝑘𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶
6 csbeq1a 3106 . . . . . . . . . . . . . 14 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
7 csbeq1a 3106 . . . . . . . . . . . . . 14 (𝑘 = 𝑛𝐶 = 𝑛 / 𝑘𝐶)
86, 7eqeq12d 2221 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐵 = 𝐶𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶))
95, 8rspc 2875 . . . . . . . . . . . 12 (𝑛𝐴 → (∀𝑘𝐴 𝐵 = 𝐶𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶))
101, 2, 9sylc 62 . . . . . . . . . . 11 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛𝐴) → 𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶)
11 simpllr 534 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ)
12 simplrl 535 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑚))
13 simplrr 536 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
14 simpr 110 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
1511, 12, 13, 14sumdc 11754 . . . . . . . . . . 11 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → DECID 𝑛𝐴)
1610, 15ifeq1dadc 3606 . . . . . . . . . 10 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))
1716mpteq2dva 4145 . . . . . . . . 9 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) → (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))
1817seqeq3d 10632 . . . . . . . 8 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))))
1918breq1d 4064 . . . . . . 7 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
2019pm5.32da 452 . . . . . 6 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) → (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
21 df-3an 983 . . . . . 6 ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
22 df-3an 983 . . . . . 6 ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
2320, 21, 223bitr4g 223 . . . . 5 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
2423rexbidva 2504 . . . 4 (∀𝑘𝐴 𝐵 = 𝐶 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
25 f1of 5539 . . . . . . . . . . . . . . 15 (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)⟶𝐴)
2625ad3antlr 493 . . . . . . . . . . . . . 14 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑓:(1...𝑚)⟶𝐴)
27 simplr 528 . . . . . . . . . . . . . . 15 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑛 ∈ ℕ)
28 simpr 110 . . . . . . . . . . . . . . 15 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑛𝑚)
29 simp-4r 542 . . . . . . . . . . . . . . . . 17 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑚 ∈ ℕ)
3029nnzd 9524 . . . . . . . . . . . . . . . 16 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑚 ∈ ℤ)
31 fznn 10241 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℤ → (𝑛 ∈ (1...𝑚) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑚)))
3230, 31syl 14 . . . . . . . . . . . . . . 15 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → (𝑛 ∈ (1...𝑚) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑚)))
3327, 28, 32mpbir2and 947 . . . . . . . . . . . . . 14 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑛 ∈ (1...𝑚))
3426, 33ffvelcdmd 5734 . . . . . . . . . . . . 13 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → (𝑓𝑛) ∈ 𝐴)
35 simp-4l 541 . . . . . . . . . . . . 13 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → ∀𝑘𝐴 𝐵 = 𝐶)
36 nfcsb1v 3130 . . . . . . . . . . . . . . 15 𝑘(𝑓𝑛) / 𝑘𝐵
37 nfcsb1v 3130 . . . . . . . . . . . . . . 15 𝑘(𝑓𝑛) / 𝑘𝐶
3836, 37nfeq 2357 . . . . . . . . . . . . . 14 𝑘(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶
39 csbeq1a 3106 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑛) → 𝐵 = (𝑓𝑛) / 𝑘𝐵)
40 csbeq1a 3106 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑛) → 𝐶 = (𝑓𝑛) / 𝑘𝐶)
4139, 40eqeq12d 2221 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑛) → (𝐵 = 𝐶(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶))
4238, 41rspc 2875 . . . . . . . . . . . . 13 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 𝐵 = 𝐶(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶))
4334, 35, 42sylc 62 . . . . . . . . . . . 12 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → (𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶)
44 simpr 110 . . . . . . . . . . . . . 14 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4544nnzd 9524 . . . . . . . . . . . . 13 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
46 simpllr 534 . . . . . . . . . . . . . 14 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℕ)
4746nnzd 9524 . . . . . . . . . . . . 13 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℤ)
48 zdcle 9479 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) → DECID 𝑛𝑚)
4945, 47, 48syl2anc 411 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → DECID 𝑛𝑚)
5043, 49ifeq1dadc 3606 . . . . . . . . . . 11 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0))
5150mpteq2dva 4145 . . . . . . . . . 10 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))
5251seqeq3d 10632 . . . . . . . . 9 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0))))
5352fveq1d 5596 . . . . . . . 8 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))
5453eqeq2d 2218 . . . . . . 7 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))
5554pm5.32da 452 . . . . . 6 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
5655exbidv 1849 . . . . 5 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
5756rexbidva 2504 . . . 4 (∀𝑘𝐴 𝐵 = 𝐶 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
5824, 57orbi12d 795 . . 3 (∀𝑘𝐴 𝐵 = 𝐶 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))))
5958iotabidv 5268 . 2 (∀𝑘𝐴 𝐵 = 𝐶 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))))
60 df-sumdc 11750 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
61 df-sumdc 11750 . 2 Σ𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
6259, 60, 613eqtr4g 2264 1 (∀𝑘𝐴 𝐵 = 𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  wrex 2486  csb 3097  wss 3170  ifcif 3575   class class class wbr 4054  cmpt 4116  cio 5244  wf 5281  1-1-ontowf1o 5284  cfv 5285  (class class class)co 5962  0cc0 7955  1c1 7956   + caddc 7958  cle 8138  cn 9066  cz 9402  cuz 9678  ...cfz 10160  seqcseq 10624  cli 11674  Σcsu 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-recs 6409  df-frec 6495  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-fz 10161  df-seqfrec 10625  df-sumdc 11750
This theorem is referenced by:  sumeq2i  11760  sumeq2d  11763  fsum00  11858
  Copyright terms: Public domain W3C validator