| Step | Hyp | Ref
| Expression |
| 1 | | simpr 110 |
. . . . . . . . . . . 12
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ 𝐴) |
| 2 | | simp-4l 541 |
. . . . . . . . . . . 12
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | | nfcsb1v 3117 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐵 |
| 4 | | nfcsb1v 3117 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐶 |
| 5 | 3, 4 | nfeq 2347 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑛 / 𝑘⦌𝐶 |
| 6 | | csbeq1a 3093 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑛 → 𝐵 = ⦋𝑛 / 𝑘⦌𝐵) |
| 7 | | csbeq1a 3093 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑛 → 𝐶 = ⦋𝑛 / 𝑘⦌𝐶) |
| 8 | 6, 7 | eqeq12d 2211 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑛 → (𝐵 = 𝐶 ↔ ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑛 / 𝑘⦌𝐶)) |
| 9 | 5, 8 | rspc 2862 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑛 / 𝑘⦌𝐶)) |
| 10 | 1, 2, 9 | sylc 62 |
. . . . . . . . . . 11
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛 ∈ 𝐴) → ⦋𝑛 / 𝑘⦌𝐵 = ⦋𝑛 / 𝑘⦌𝐶) |
| 11 | | simpllr 534 |
. . . . . . . . . . . 12
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ) |
| 12 | | simplrl 535 |
. . . . . . . . . . . 12
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
| 13 | | simplrr 536 |
. . . . . . . . . . . 12
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) → ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
| 14 | | simpr 110 |
. . . . . . . . . . . 12
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) |
| 15 | 11, 12, 13, 14 | sumdc 11523 |
. . . . . . . . . . 11
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) → DECID
𝑛 ∈ 𝐴) |
| 16 | 10, 15 | ifeq1dadc 3591 |
. . . . . . . . . 10
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ ℤ) → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) = if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) |
| 17 | 16 | mpteq2dva 4123 |
. . . . . . . . 9
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) → (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) |
| 18 | 17 | seqeq3d 10547 |
. . . . . . . 8
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)))) |
| 19 | 18 | breq1d 4043 |
. . . . . . 7
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥)) |
| 20 | 19 | pm5.32da 452 |
. . . . . 6
⊢
((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) → (((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥))) |
| 21 | | df-3an 982 |
. . . . . 6
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥)) |
| 22 | | df-3an 982 |
. . . . . 6
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥)) |
| 23 | 20, 21, 22 | 3bitr4g 223 |
. . . . 5
⊢
((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥))) |
| 24 | 23 | rexbidva 2494 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 𝐵 = 𝐶 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥))) |
| 25 | | f1of 5504 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...𝑚)–1-1-onto→𝐴 → 𝑓:(1...𝑚)⟶𝐴) |
| 26 | 25 | ad3antlr 493 |
. . . . . . . . . . . . . 14
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑓:(1...𝑚)⟶𝐴) |
| 27 | | simplr 528 |
. . . . . . . . . . . . . . 15
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑛 ∈ ℕ) |
| 28 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑛 ≤ 𝑚) |
| 29 | | simp-4r 542 |
. . . . . . . . . . . . . . . . 17
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑚 ∈ ℕ) |
| 30 | 29 | nnzd 9447 |
. . . . . . . . . . . . . . . 16
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑚 ∈ ℤ) |
| 31 | | fznn 10164 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℤ → (𝑛 ∈ (1...𝑚) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑚))) |
| 32 | 30, 31 | syl 14 |
. . . . . . . . . . . . . . 15
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → (𝑛 ∈ (1...𝑚) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑚))) |
| 33 | 27, 28, 32 | mpbir2and 946 |
. . . . . . . . . . . . . 14
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑛 ∈ (1...𝑚)) |
| 34 | 26, 33 | ffvelcdmd 5698 |
. . . . . . . . . . . . 13
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → (𝑓‘𝑛) ∈ 𝐴) |
| 35 | | simp-4l 541 |
. . . . . . . . . . . . 13
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
| 36 | | nfcsb1v 3117 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋(𝑓‘𝑛) / 𝑘⦌𝐵 |
| 37 | | nfcsb1v 3117 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋(𝑓‘𝑛) / 𝑘⦌𝐶 |
| 38 | 36, 37 | nfeq 2347 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶 |
| 39 | | csbeq1a 3093 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑓‘𝑛) → 𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) |
| 40 | | csbeq1a 3093 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑓‘𝑛) → 𝐶 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) |
| 41 | 39, 40 | eqeq12d 2211 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑓‘𝑛) → (𝐵 = 𝐶 ↔ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)) |
| 42 | 38, 41 | rspc 2862 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑛) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)) |
| 43 | 34, 35, 42 | sylc 62 |
. . . . . . . . . . . 12
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) |
| 44 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 45 | 44 | nnzd 9447 |
. . . . . . . . . . . . 13
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
| 46 | | simpllr 534 |
. . . . . . . . . . . . . 14
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℕ) |
| 47 | 46 | nnzd 9447 |
. . . . . . . . . . . . 13
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℤ) |
| 48 | | zdcle 9402 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) →
DECID 𝑛 ≤
𝑚) |
| 49 | 45, 47, 48 | syl2anc 411 |
. . . . . . . . . . . 12
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → DECID
𝑛 ≤ 𝑚) |
| 50 | 43, 49 | ifeq1dadc 3591 |
. . . . . . . . . . 11
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)) |
| 51 | 50 | mpteq2dva 4123 |
. . . . . . . . . 10
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0))) |
| 52 | 51 | seqeq3d 10547 |
. . . . . . . . 9
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))) |
| 53 | 52 | fveq1d 5560 |
. . . . . . . 8
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚)) |
| 54 | 53 | eqeq2d 2208 |
. . . . . . 7
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚))) |
| 55 | 54 | pm5.32da 452 |
. . . . . 6
⊢
((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚)))) |
| 56 | 55 | exbidv 1839 |
. . . . 5
⊢
((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚)))) |
| 57 | 56 | rexbidva 2494 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 𝐵 = 𝐶 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚)))) |
| 58 | 24, 57 | orbi12d 794 |
. . 3
⊢
(∀𝑘 ∈
𝐴 𝐵 = 𝐶 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚))))) |
| 59 | 58 | iotabidv 5241 |
. 2
⊢
(∀𝑘 ∈
𝐴 𝐵 = 𝐶 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚))))) |
| 60 | | df-sumdc 11519 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
| 61 | | df-sumdc 11519 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚)))) |
| 62 | 59, 60, 61 | 3eqtr4g 2254 |
1
⊢
(∀𝑘 ∈
𝐴 𝐵 = 𝐶 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |