ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq2 GIF version

Theorem sumeq2 11670
Description: Equality theorem for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
sumeq2 (∀𝑘𝐴 𝐵 = 𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sumeq2
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . . . . . 12 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛𝐴) → 𝑛𝐴)
2 simp-4l 541 . . . . . . . . . . . 12 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛𝐴) → ∀𝑘𝐴 𝐵 = 𝐶)
3 nfcsb1v 3126 . . . . . . . . . . . . . 14 𝑘𝑛 / 𝑘𝐵
4 nfcsb1v 3126 . . . . . . . . . . . . . 14 𝑘𝑛 / 𝑘𝐶
53, 4nfeq 2356 . . . . . . . . . . . . 13 𝑘𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶
6 csbeq1a 3102 . . . . . . . . . . . . . 14 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
7 csbeq1a 3102 . . . . . . . . . . . . . 14 (𝑘 = 𝑛𝐶 = 𝑛 / 𝑘𝐶)
86, 7eqeq12d 2220 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐵 = 𝐶𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶))
95, 8rspc 2871 . . . . . . . . . . . 12 (𝑛𝐴 → (∀𝑘𝐴 𝐵 = 𝐶𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶))
101, 2, 9sylc 62 . . . . . . . . . . 11 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛𝐴) → 𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶)
11 simpllr 534 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ)
12 simplrl 535 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑚))
13 simplrr 536 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
14 simpr 110 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
1511, 12, 13, 14sumdc 11669 . . . . . . . . . . 11 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → DECID 𝑛𝐴)
1610, 15ifeq1dadc 3601 . . . . . . . . . 10 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))
1716mpteq2dva 4134 . . . . . . . . 9 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) → (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))
1817seqeq3d 10600 . . . . . . . 8 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))))
1918breq1d 4054 . . . . . . 7 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
2019pm5.32da 452 . . . . . 6 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) → (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
21 df-3an 983 . . . . . 6 ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
22 df-3an 983 . . . . . 6 ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
2320, 21, 223bitr4g 223 . . . . 5 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
2423rexbidva 2503 . . . 4 (∀𝑘𝐴 𝐵 = 𝐶 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
25 f1of 5522 . . . . . . . . . . . . . . 15 (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)⟶𝐴)
2625ad3antlr 493 . . . . . . . . . . . . . 14 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑓:(1...𝑚)⟶𝐴)
27 simplr 528 . . . . . . . . . . . . . . 15 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑛 ∈ ℕ)
28 simpr 110 . . . . . . . . . . . . . . 15 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑛𝑚)
29 simp-4r 542 . . . . . . . . . . . . . . . . 17 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑚 ∈ ℕ)
3029nnzd 9494 . . . . . . . . . . . . . . . 16 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑚 ∈ ℤ)
31 fznn 10211 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℤ → (𝑛 ∈ (1...𝑚) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑚)))
3230, 31syl 14 . . . . . . . . . . . . . . 15 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → (𝑛 ∈ (1...𝑚) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑚)))
3327, 28, 32mpbir2and 947 . . . . . . . . . . . . . 14 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑛 ∈ (1...𝑚))
3426, 33ffvelcdmd 5716 . . . . . . . . . . . . 13 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → (𝑓𝑛) ∈ 𝐴)
35 simp-4l 541 . . . . . . . . . . . . 13 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → ∀𝑘𝐴 𝐵 = 𝐶)
36 nfcsb1v 3126 . . . . . . . . . . . . . . 15 𝑘(𝑓𝑛) / 𝑘𝐵
37 nfcsb1v 3126 . . . . . . . . . . . . . . 15 𝑘(𝑓𝑛) / 𝑘𝐶
3836, 37nfeq 2356 . . . . . . . . . . . . . 14 𝑘(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶
39 csbeq1a 3102 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑛) → 𝐵 = (𝑓𝑛) / 𝑘𝐵)
40 csbeq1a 3102 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑛) → 𝐶 = (𝑓𝑛) / 𝑘𝐶)
4139, 40eqeq12d 2220 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑛) → (𝐵 = 𝐶(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶))
4238, 41rspc 2871 . . . . . . . . . . . . 13 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 𝐵 = 𝐶(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶))
4334, 35, 42sylc 62 . . . . . . . . . . . 12 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → (𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶)
44 simpr 110 . . . . . . . . . . . . . 14 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4544nnzd 9494 . . . . . . . . . . . . 13 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
46 simpllr 534 . . . . . . . . . . . . . 14 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℕ)
4746nnzd 9494 . . . . . . . . . . . . 13 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℤ)
48 zdcle 9449 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) → DECID 𝑛𝑚)
4945, 47, 48syl2anc 411 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → DECID 𝑛𝑚)
5043, 49ifeq1dadc 3601 . . . . . . . . . . 11 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0))
5150mpteq2dva 4134 . . . . . . . . . 10 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))
5251seqeq3d 10600 . . . . . . . . 9 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0))))
5352fveq1d 5578 . . . . . . . 8 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))
5453eqeq2d 2217 . . . . . . 7 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))
5554pm5.32da 452 . . . . . 6 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
5655exbidv 1848 . . . . 5 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
5756rexbidva 2503 . . . 4 (∀𝑘𝐴 𝐵 = 𝐶 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
5824, 57orbi12d 795 . . 3 (∀𝑘𝐴 𝐵 = 𝐶 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))))
5958iotabidv 5254 . 2 (∀𝑘𝐴 𝐵 = 𝐶 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))))
60 df-sumdc 11665 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
61 df-sumdc 11665 . 2 Σ𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
6259, 60, 613eqtr4g 2263 1 (∀𝑘𝐴 𝐵 = 𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wex 1515  wcel 2176  wral 2484  wrex 2485  csb 3093  wss 3166  ifcif 3571   class class class wbr 4044  cmpt 4105  cio 5230  wf 5267  1-1-ontowf1o 5270  cfv 5271  (class class class)co 5944  0cc0 7925  1c1 7926   + caddc 7928  cle 8108  cn 9036  cz 9372  cuz 9648  ...cfz 10130  seqcseq 10592  cli 11589  Σcsu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-seqfrec 10593  df-sumdc 11665
This theorem is referenced by:  sumeq2i  11675  sumeq2d  11678  fsum00  11773
  Copyright terms: Public domain W3C validator