ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq2 GIF version

Theorem sumeq2 11322
Description: Equality theorem for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
sumeq2 (∀𝑘𝐴 𝐵 = 𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sumeq2
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . . . . . . . 12 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛𝐴) → 𝑛𝐴)
2 simp-4l 536 . . . . . . . . . . . 12 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛𝐴) → ∀𝑘𝐴 𝐵 = 𝐶)
3 nfcsb1v 3082 . . . . . . . . . . . . . 14 𝑘𝑛 / 𝑘𝐵
4 nfcsb1v 3082 . . . . . . . . . . . . . 14 𝑘𝑛 / 𝑘𝐶
53, 4nfeq 2320 . . . . . . . . . . . . 13 𝑘𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶
6 csbeq1a 3058 . . . . . . . . . . . . . 14 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
7 csbeq1a 3058 . . . . . . . . . . . . . 14 (𝑘 = 𝑛𝐶 = 𝑛 / 𝑘𝐶)
86, 7eqeq12d 2185 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐵 = 𝐶𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶))
95, 8rspc 2828 . . . . . . . . . . . 12 (𝑛𝐴 → (∀𝑘𝐴 𝐵 = 𝐶𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶))
101, 2, 9sylc 62 . . . . . . . . . . 11 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛𝐴) → 𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶)
11 simpllr 529 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ)
12 simplrl 530 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑚))
13 simplrr 531 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
14 simpr 109 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
1511, 12, 13, 14sumdc 11321 . . . . . . . . . . 11 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → DECID 𝑛𝐴)
1610, 15ifeq1dadc 3556 . . . . . . . . . 10 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))
1716mpteq2dva 4079 . . . . . . . . 9 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) → (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))
1817seqeq3d 10409 . . . . . . . 8 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))))
1918breq1d 3999 . . . . . . 7 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
2019pm5.32da 449 . . . . . 6 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) → (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
21 df-3an 975 . . . . . 6 ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
22 df-3an 975 . . . . . 6 ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
2320, 21, 223bitr4g 222 . . . . 5 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
2423rexbidva 2467 . . . 4 (∀𝑘𝐴 𝐵 = 𝐶 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
25 f1of 5442 . . . . . . . . . . . . . . 15 (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)⟶𝐴)
2625ad3antlr 490 . . . . . . . . . . . . . 14 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑓:(1...𝑚)⟶𝐴)
27 simplr 525 . . . . . . . . . . . . . . 15 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑛 ∈ ℕ)
28 simpr 109 . . . . . . . . . . . . . . 15 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑛𝑚)
29 simp-4r 537 . . . . . . . . . . . . . . . . 17 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑚 ∈ ℕ)
3029nnzd 9333 . . . . . . . . . . . . . . . 16 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑚 ∈ ℤ)
31 fznn 10045 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℤ → (𝑛 ∈ (1...𝑚) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑚)))
3230, 31syl 14 . . . . . . . . . . . . . . 15 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → (𝑛 ∈ (1...𝑚) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑚)))
3327, 28, 32mpbir2and 939 . . . . . . . . . . . . . 14 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑛 ∈ (1...𝑚))
3426, 33ffvelrnd 5632 . . . . . . . . . . . . 13 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → (𝑓𝑛) ∈ 𝐴)
35 simp-4l 536 . . . . . . . . . . . . 13 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → ∀𝑘𝐴 𝐵 = 𝐶)
36 nfcsb1v 3082 . . . . . . . . . . . . . . 15 𝑘(𝑓𝑛) / 𝑘𝐵
37 nfcsb1v 3082 . . . . . . . . . . . . . . 15 𝑘(𝑓𝑛) / 𝑘𝐶
3836, 37nfeq 2320 . . . . . . . . . . . . . 14 𝑘(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶
39 csbeq1a 3058 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑛) → 𝐵 = (𝑓𝑛) / 𝑘𝐵)
40 csbeq1a 3058 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑛) → 𝐶 = (𝑓𝑛) / 𝑘𝐶)
4139, 40eqeq12d 2185 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑛) → (𝐵 = 𝐶(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶))
4238, 41rspc 2828 . . . . . . . . . . . . 13 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 𝐵 = 𝐶(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶))
4334, 35, 42sylc 62 . . . . . . . . . . . 12 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → (𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶)
44 simpr 109 . . . . . . . . . . . . . 14 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4544nnzd 9333 . . . . . . . . . . . . 13 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
46 simpllr 529 . . . . . . . . . . . . . 14 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℕ)
4746nnzd 9333 . . . . . . . . . . . . 13 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℤ)
48 zdcle 9288 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) → DECID 𝑛𝑚)
4945, 47, 48syl2anc 409 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → DECID 𝑛𝑚)
5043, 49ifeq1dadc 3556 . . . . . . . . . . 11 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0))
5150mpteq2dva 4079 . . . . . . . . . 10 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))
5251seqeq3d 10409 . . . . . . . . 9 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0))))
5352fveq1d 5498 . . . . . . . 8 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))
5453eqeq2d 2182 . . . . . . 7 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))
5554pm5.32da 449 . . . . . 6 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
5655exbidv 1818 . . . . 5 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
5756rexbidva 2467 . . . 4 (∀𝑘𝐴 𝐵 = 𝐶 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
5824, 57orbi12d 788 . . 3 (∀𝑘𝐴 𝐵 = 𝐶 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))))
5958iotabidv 5181 . 2 (∀𝑘𝐴 𝐵 = 𝐶 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))))
60 df-sumdc 11317 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
61 df-sumdc 11317 . 2 Σ𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
6259, 60, 613eqtr4g 2228 1 (∀𝑘𝐴 𝐵 = 𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  DECID wdc 829  w3a 973   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  csb 3049  wss 3121  ifcif 3526   class class class wbr 3989  cmpt 4050  cio 5158  wf 5194  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  0cc0 7774  1c1 7775   + caddc 7777  cle 7955  cn 8878  cz 9212  cuz 9487  ...cfz 9965  seqcseq 10401  cli 11241  Σcsu 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-seqfrec 10402  df-sumdc 11317
This theorem is referenced by:  sumeq2i  11327  sumeq2d  11330  fsum00  11425
  Copyright terms: Public domain W3C validator