ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq2 GIF version

Theorem sumeq2 11135
Description: Equality theorem for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
sumeq2 (∀𝑘𝐴 𝐵 = 𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sumeq2
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . . . . . . . 12 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛𝐴) → 𝑛𝐴)
2 simp-4l 530 . . . . . . . . . . . 12 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛𝐴) → ∀𝑘𝐴 𝐵 = 𝐶)
3 nfcsb1v 3035 . . . . . . . . . . . . . 14 𝑘𝑛 / 𝑘𝐵
4 nfcsb1v 3035 . . . . . . . . . . . . . 14 𝑘𝑛 / 𝑘𝐶
53, 4nfeq 2289 . . . . . . . . . . . . 13 𝑘𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶
6 csbeq1a 3012 . . . . . . . . . . . . . 14 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
7 csbeq1a 3012 . . . . . . . . . . . . . 14 (𝑘 = 𝑛𝐶 = 𝑛 / 𝑘𝐶)
86, 7eqeq12d 2154 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐵 = 𝐶𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶))
95, 8rspc 2783 . . . . . . . . . . . 12 (𝑛𝐴 → (∀𝑘𝐴 𝐵 = 𝐶𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶))
101, 2, 9sylc 62 . . . . . . . . . . 11 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) ∧ 𝑛𝐴) → 𝑛 / 𝑘𝐵 = 𝑛 / 𝑘𝐶)
11 simpllr 523 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ)
12 simplrl 524 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑚))
13 simplrr 525 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
14 simpr 109 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
1511, 12, 13, 14sumdc 11134 . . . . . . . . . . 11 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → DECID 𝑛𝐴)
1610, 15ifeq1dadc 3502 . . . . . . . . . 10 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) ∧ 𝑛 ∈ ℤ) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))
1716mpteq2dva 4018 . . . . . . . . 9 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) → (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))
1817seqeq3d 10233 . . . . . . . 8 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))))
1918breq1d 3939 . . . . . . 7 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
2019pm5.32da 447 . . . . . 6 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) → (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
21 df-3an 964 . . . . . 6 ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
22 df-3an 964 . . . . . 6 ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
2320, 21, 223bitr4g 222 . . . . 5 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
2423rexbidva 2434 . . . 4 (∀𝑘𝐴 𝐵 = 𝐶 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
25 f1of 5367 . . . . . . . . . . . . . . 15 (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)⟶𝐴)
2625ad3antlr 484 . . . . . . . . . . . . . 14 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑓:(1...𝑚)⟶𝐴)
27 simplr 519 . . . . . . . . . . . . . . 15 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑛 ∈ ℕ)
28 simpr 109 . . . . . . . . . . . . . . 15 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑛𝑚)
29 simp-4r 531 . . . . . . . . . . . . . . . . 17 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑚 ∈ ℕ)
3029nnzd 9179 . . . . . . . . . . . . . . . 16 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑚 ∈ ℤ)
31 fznn 9876 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℤ → (𝑛 ∈ (1...𝑚) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑚)))
3230, 31syl 14 . . . . . . . . . . . . . . 15 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → (𝑛 ∈ (1...𝑚) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑚)))
3327, 28, 32mpbir2and 928 . . . . . . . . . . . . . 14 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → 𝑛 ∈ (1...𝑚))
3426, 33ffvelrnd 5556 . . . . . . . . . . . . 13 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → (𝑓𝑛) ∈ 𝐴)
35 simp-4l 530 . . . . . . . . . . . . 13 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → ∀𝑘𝐴 𝐵 = 𝐶)
36 nfcsb1v 3035 . . . . . . . . . . . . . . 15 𝑘(𝑓𝑛) / 𝑘𝐵
37 nfcsb1v 3035 . . . . . . . . . . . . . . 15 𝑘(𝑓𝑛) / 𝑘𝐶
3836, 37nfeq 2289 . . . . . . . . . . . . . 14 𝑘(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶
39 csbeq1a 3012 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑛) → 𝐵 = (𝑓𝑛) / 𝑘𝐵)
40 csbeq1a 3012 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑛) → 𝐶 = (𝑓𝑛) / 𝑘𝐶)
4139, 40eqeq12d 2154 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑛) → (𝐵 = 𝐶(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶))
4238, 41rspc 2783 . . . . . . . . . . . . 13 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 𝐵 = 𝐶(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶))
4334, 35, 42sylc 62 . . . . . . . . . . . 12 (((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛𝑚) → (𝑓𝑛) / 𝑘𝐵 = (𝑓𝑛) / 𝑘𝐶)
44 simpr 109 . . . . . . . . . . . . . 14 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4544nnzd 9179 . . . . . . . . . . . . 13 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
46 simpllr 523 . . . . . . . . . . . . . 14 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℕ)
4746nnzd 9179 . . . . . . . . . . . . 13 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℤ)
48 zdcle 9134 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) → DECID 𝑛𝑚)
4945, 47, 48syl2anc 408 . . . . . . . . . . . 12 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → DECID 𝑛𝑚)
5043, 49ifeq1dadc 3502 . . . . . . . . . . 11 ((((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑛 ∈ ℕ) → if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0))
5150mpteq2dva 4018 . . . . . . . . . 10 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))
5251seqeq3d 10233 . . . . . . . . 9 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0))))
5352fveq1d 5423 . . . . . . . 8 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))
5453eqeq2d 2151 . . . . . . 7 (((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))
5554pm5.32da 447 . . . . . 6 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
5655exbidv 1797 . . . . 5 ((∀𝑘𝐴 𝐵 = 𝐶𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
5756rexbidva 2434 . . . 4 (∀𝑘𝐴 𝐵 = 𝐶 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
5824, 57orbi12d 782 . . 3 (∀𝑘𝐴 𝐵 = 𝐶 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))))
5958iotabidv 5109 . 2 (∀𝑘𝐴 𝐵 = 𝐶 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))))
60 df-sumdc 11130 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
61 df-sumdc 11130 . 2 Σ𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
6259, 60, 613eqtr4g 2197 1 (∀𝑘𝐴 𝐵 = 𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  DECID wdc 819  w3a 962   = wceq 1331  wex 1468  wcel 1480  wral 2416  wrex 2417  csb 3003  wss 3071  ifcif 3474   class class class wbr 3929  cmpt 3989  cio 5086  wf 5119  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  0cc0 7627  1c1 7628   + caddc 7630  cle 7808  cn 8727  cz 9061  cuz 9333  ...cfz 9797  seqcseq 10225  cli 11054  Σcsu 11129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334  df-fz 9798  df-seqfrec 10226  df-sumdc 11130
This theorem is referenced by:  sumeq2i  11140  sumeq2d  11143  fsum00  11238
  Copyright terms: Public domain W3C validator