ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsum1 GIF version

Theorem nfsum1 11502
Description: Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypothesis
Ref Expression
nfsum1.1 𝑘𝐴
Assertion
Ref Expression
nfsum1 𝑘Σ𝑘𝐴 𝐵

Proof of Theorem nfsum1
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sumdc 11500 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
2 nfcv 2336 . . . . 5 𝑘
3 nfsum1.1 . . . . . . 7 𝑘𝐴
4 nfcv 2336 . . . . . . 7 𝑘(ℤ𝑚)
53, 4nfss 3173 . . . . . 6 𝑘 𝐴 ⊆ (ℤ𝑚)
63nfcri 2330 . . . . . . . 8 𝑘 𝑗𝐴
76nfdc 1670 . . . . . . 7 𝑘DECID 𝑗𝐴
84, 7nfralxy 2532 . . . . . 6 𝑘𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
9 nfcv 2336 . . . . . . . 8 𝑘𝑚
10 nfcv 2336 . . . . . . . 8 𝑘 +
113nfcri 2330 . . . . . . . . . 10 𝑘 𝑛𝐴
12 nfcsb1v 3114 . . . . . . . . . 10 𝑘𝑛 / 𝑘𝐵
13 nfcv 2336 . . . . . . . . . 10 𝑘0
1411, 12, 13nfif 3586 . . . . . . . . 9 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
152, 14nfmpt 4122 . . . . . . . 8 𝑘(𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
169, 10, 15nfseq 10531 . . . . . . 7 𝑘seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
17 nfcv 2336 . . . . . . 7 𝑘
18 nfcv 2336 . . . . . . 7 𝑘𝑥
1916, 17, 18nfbr 4076 . . . . . 6 𝑘seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥
205, 8, 19nf3an 1577 . . . . 5 𝑘(𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
212, 20nfrexya 2535 . . . 4 𝑘𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
22 nfcv 2336 . . . . 5 𝑘
23 nfcv 2336 . . . . . . . 8 𝑘𝑓
24 nfcv 2336 . . . . . . . 8 𝑘(1...𝑚)
2523, 24, 3nff1o 5499 . . . . . . 7 𝑘 𝑓:(1...𝑚)–1-1-onto𝐴
26 nfcv 2336 . . . . . . . . . 10 𝑘1
27 nfv 1539 . . . . . . . . . . . 12 𝑘 𝑛𝑚
28 nfcsb1v 3114 . . . . . . . . . . . 12 𝑘(𝑓𝑛) / 𝑘𝐵
2927, 28, 13nfif 3586 . . . . . . . . . . 11 𝑘if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)
3022, 29nfmpt 4122 . . . . . . . . . 10 𝑘(𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))
3126, 10, 30nfseq 10531 . . . . . . . . 9 𝑘seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))
3231, 9nffv 5565 . . . . . . . 8 𝑘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
3332nfeq2 2348 . . . . . . 7 𝑘 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
3425, 33nfan 1576 . . . . . 6 𝑘(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3534nfex 1648 . . . . 5 𝑘𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3622, 35nfrexya 2535 . . . 4 𝑘𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3721, 36nfor 1585 . . 3 𝑘(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
3837nfiotaw 5220 . 2 𝑘(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
391, 38nfcxfr 2333 1 𝑘Σ𝑘𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wex 1503  wcel 2164  wnfc 2323  wral 2472  wrex 2473  csb 3081  wss 3154  ifcif 3558   class class class wbr 4030  cmpt 4091  cio 5214  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  0cc0 7874  1c1 7875   + caddc 7877  cle 8057  cn 8984  cz 9320  cuz 9595  ...cfz 10077  seqcseq 10521  cli 11424  Σcsu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-recs 6360  df-frec 6446  df-seqfrec 10522  df-sumdc 11500
This theorem is referenced by:  mertenslem2  11682
  Copyright terms: Public domain W3C validator