Step | Hyp | Ref
| Expression |
1 | | df-sumdc 11317 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
2 | | nfcv 2312 |
. . . . 5
⊢
Ⅎ𝑘ℤ |
3 | | nfsum1.1 |
. . . . . . 7
⊢
Ⅎ𝑘𝐴 |
4 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑘(ℤ≥‘𝑚) |
5 | 3, 4 | nfss 3140 |
. . . . . 6
⊢
Ⅎ𝑘 𝐴 ⊆
(ℤ≥‘𝑚) |
6 | 3 | nfcri 2306 |
. . . . . . . 8
⊢
Ⅎ𝑘 𝑗 ∈ 𝐴 |
7 | 6 | nfdc 1652 |
. . . . . . 7
⊢
Ⅎ𝑘DECID 𝑗 ∈ 𝐴 |
8 | 4, 7 | nfralxy 2508 |
. . . . . 6
⊢
Ⅎ𝑘∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 |
9 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑚 |
10 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑘
+ |
11 | 3 | nfcri 2306 |
. . . . . . . . . 10
⊢
Ⅎ𝑘 𝑛 ∈ 𝐴 |
12 | | nfcsb1v 3082 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐵 |
13 | | nfcv 2312 |
. . . . . . . . . 10
⊢
Ⅎ𝑘0 |
14 | 11, 12, 13 | nfif 3554 |
. . . . . . . . 9
⊢
Ⅎ𝑘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) |
15 | 2, 14 | nfmpt 4081 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
16 | 9, 10, 15 | nfseq 10411 |
. . . . . . 7
⊢
Ⅎ𝑘seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) |
17 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑘
⇝ |
18 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑘𝑥 |
19 | 16, 17, 18 | nfbr 4035 |
. . . . . 6
⊢
Ⅎ𝑘seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 |
20 | 5, 8, 19 | nf3an 1559 |
. . . . 5
⊢
Ⅎ𝑘(𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) |
21 | 2, 20 | nfrexya 2511 |
. . . 4
⊢
Ⅎ𝑘∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) |
22 | | nfcv 2312 |
. . . . 5
⊢
Ⅎ𝑘ℕ |
23 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑓 |
24 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑘(1...𝑚) |
25 | 23, 24, 3 | nff1o 5440 |
. . . . . . 7
⊢
Ⅎ𝑘 𝑓:(1...𝑚)–1-1-onto→𝐴 |
26 | | nfcv 2312 |
. . . . . . . . . 10
⊢
Ⅎ𝑘1 |
27 | | nfv 1521 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘 𝑛 ≤ 𝑚 |
28 | | nfcsb1v 3082 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋(𝑓‘𝑛) / 𝑘⦌𝐵 |
29 | 27, 28, 13 | nfif 3554 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) |
30 | 22, 29 | nfmpt 4081 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) |
31 | 26, 10, 30 | nfseq 10411 |
. . . . . . . . 9
⊢
Ⅎ𝑘seq1(
+ , (𝑛 ∈ ℕ
↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0))) |
32 | 31, 9 | nffv 5506 |
. . . . . . . 8
⊢
Ⅎ𝑘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) |
33 | 32 | nfeq2 2324 |
. . . . . . 7
⊢
Ⅎ𝑘 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) |
34 | 25, 33 | nfan 1558 |
. . . . . 6
⊢
Ⅎ𝑘(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
35 | 34 | nfex 1630 |
. . . . 5
⊢
Ⅎ𝑘∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
36 | 22, 35 | nfrexya 2511 |
. . . 4
⊢
Ⅎ𝑘∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
37 | 21, 36 | nfor 1567 |
. . 3
⊢
Ⅎ𝑘(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) |
38 | 37 | nfiotaw 5164 |
. 2
⊢
Ⅎ𝑘(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
39 | 1, 38 | nfcxfr 2309 |
1
⊢
Ⅎ𝑘Σ𝑘 ∈ 𝐴 𝐵 |