ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsum1 GIF version

Theorem nfsum1 11306
Description: Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypothesis
Ref Expression
nfsum1.1 𝑘𝐴
Assertion
Ref Expression
nfsum1 𝑘Σ𝑘𝐴 𝐵

Proof of Theorem nfsum1
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sumdc 11304 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
2 nfcv 2312 . . . . 5 𝑘
3 nfsum1.1 . . . . . . 7 𝑘𝐴
4 nfcv 2312 . . . . . . 7 𝑘(ℤ𝑚)
53, 4nfss 3140 . . . . . 6 𝑘 𝐴 ⊆ (ℤ𝑚)
63nfcri 2306 . . . . . . . 8 𝑘 𝑗𝐴
76nfdc 1652 . . . . . . 7 𝑘DECID 𝑗𝐴
84, 7nfralxy 2508 . . . . . 6 𝑘𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
9 nfcv 2312 . . . . . . . 8 𝑘𝑚
10 nfcv 2312 . . . . . . . 8 𝑘 +
113nfcri 2306 . . . . . . . . . 10 𝑘 𝑛𝐴
12 nfcsb1v 3082 . . . . . . . . . 10 𝑘𝑛 / 𝑘𝐵
13 nfcv 2312 . . . . . . . . . 10 𝑘0
1411, 12, 13nfif 3553 . . . . . . . . 9 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
152, 14nfmpt 4079 . . . . . . . 8 𝑘(𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
169, 10, 15nfseq 10398 . . . . . . 7 𝑘seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
17 nfcv 2312 . . . . . . 7 𝑘
18 nfcv 2312 . . . . . . 7 𝑘𝑥
1916, 17, 18nfbr 4033 . . . . . 6 𝑘seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥
205, 8, 19nf3an 1559 . . . . 5 𝑘(𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
212, 20nfrexya 2511 . . . 4 𝑘𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
22 nfcv 2312 . . . . 5 𝑘
23 nfcv 2312 . . . . . . . 8 𝑘𝑓
24 nfcv 2312 . . . . . . . 8 𝑘(1...𝑚)
2523, 24, 3nff1o 5438 . . . . . . 7 𝑘 𝑓:(1...𝑚)–1-1-onto𝐴
26 nfcv 2312 . . . . . . . . . 10 𝑘1
27 nfv 1521 . . . . . . . . . . . 12 𝑘 𝑛𝑚
28 nfcsb1v 3082 . . . . . . . . . . . 12 𝑘(𝑓𝑛) / 𝑘𝐵
2927, 28, 13nfif 3553 . . . . . . . . . . 11 𝑘if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)
3022, 29nfmpt 4079 . . . . . . . . . 10 𝑘(𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))
3126, 10, 30nfseq 10398 . . . . . . . . 9 𝑘seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))
3231, 9nffv 5504 . . . . . . . 8 𝑘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
3332nfeq2 2324 . . . . . . 7 𝑘 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
3425, 33nfan 1558 . . . . . 6 𝑘(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3534nfex 1630 . . . . 5 𝑘𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3622, 35nfrexya 2511 . . . 4 𝑘𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3721, 36nfor 1567 . . 3 𝑘(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
3837nfiotaw 5162 . 2 𝑘(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
391, 38nfcxfr 2309 1 𝑘Σ𝑘𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 103  wo 703  DECID wdc 829  w3a 973   = wceq 1348  wex 1485  wcel 2141  wnfc 2299  wral 2448  wrex 2449  csb 3049  wss 3121  ifcif 3525   class class class wbr 3987  cmpt 4048  cio 5156  1-1-ontowf1o 5195  cfv 5196  (class class class)co 5850  0cc0 7761  1c1 7762   + caddc 7764  cle 7942  cn 8865  cz 9199  cuz 9474  ...cfz 9952  seqcseq 10388  cli 11228  Σcsu 11303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-if 3526  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-recs 6281  df-frec 6367  df-seqfrec 10389  df-sumdc 11304
This theorem is referenced by:  mertenslem2  11486
  Copyright terms: Public domain W3C validator