ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsum1 GIF version

Theorem nfsum1 11157
Description: Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypothesis
Ref Expression
nfsum1.1 𝑘𝐴
Assertion
Ref Expression
nfsum1 𝑘Σ𝑘𝐴 𝐵

Proof of Theorem nfsum1
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sumdc 11155 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
2 nfcv 2282 . . . . 5 𝑘
3 nfsum1.1 . . . . . . 7 𝑘𝐴
4 nfcv 2282 . . . . . . 7 𝑘(ℤ𝑚)
53, 4nfss 3095 . . . . . 6 𝑘 𝐴 ⊆ (ℤ𝑚)
63nfcri 2276 . . . . . . . 8 𝑘 𝑗𝐴
76nfdc 1638 . . . . . . 7 𝑘DECID 𝑗𝐴
84, 7nfralxy 2474 . . . . . 6 𝑘𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
9 nfcv 2282 . . . . . . . 8 𝑘𝑚
10 nfcv 2282 . . . . . . . 8 𝑘 +
113nfcri 2276 . . . . . . . . . 10 𝑘 𝑛𝐴
12 nfcsb1v 3040 . . . . . . . . . 10 𝑘𝑛 / 𝑘𝐵
13 nfcv 2282 . . . . . . . . . 10 𝑘0
1411, 12, 13nfif 3505 . . . . . . . . 9 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
152, 14nfmpt 4028 . . . . . . . 8 𝑘(𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
169, 10, 15nfseq 10259 . . . . . . 7 𝑘seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
17 nfcv 2282 . . . . . . 7 𝑘
18 nfcv 2282 . . . . . . 7 𝑘𝑥
1916, 17, 18nfbr 3982 . . . . . 6 𝑘seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥
205, 8, 19nf3an 1546 . . . . 5 𝑘(𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
212, 20nfrexya 2477 . . . 4 𝑘𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
22 nfcv 2282 . . . . 5 𝑘
23 nfcv 2282 . . . . . . . 8 𝑘𝑓
24 nfcv 2282 . . . . . . . 8 𝑘(1...𝑚)
2523, 24, 3nff1o 5373 . . . . . . 7 𝑘 𝑓:(1...𝑚)–1-1-onto𝐴
26 nfcv 2282 . . . . . . . . . 10 𝑘1
27 nfv 1509 . . . . . . . . . . . 12 𝑘 𝑛𝑚
28 nfcsb1v 3040 . . . . . . . . . . . 12 𝑘(𝑓𝑛) / 𝑘𝐵
2927, 28, 13nfif 3505 . . . . . . . . . . 11 𝑘if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)
3022, 29nfmpt 4028 . . . . . . . . . 10 𝑘(𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))
3126, 10, 30nfseq 10259 . . . . . . . . 9 𝑘seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))
3231, 9nffv 5439 . . . . . . . 8 𝑘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
3332nfeq2 2294 . . . . . . 7 𝑘 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
3425, 33nfan 1545 . . . . . 6 𝑘(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3534nfex 1617 . . . . 5 𝑘𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3622, 35nfrexya 2477 . . . 4 𝑘𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3721, 36nfor 1554 . . 3 𝑘(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
3837nfiotaw 5100 . 2 𝑘(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
391, 38nfcxfr 2279 1 𝑘Σ𝑘𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 103  wo 698  DECID wdc 820  w3a 963   = wceq 1332  wex 1469  wcel 1481  wnfc 2269  wral 2417  wrex 2418  csb 3007  wss 3076  ifcif 3479   class class class wbr 3937  cmpt 3997  cio 5094  1-1-ontowf1o 5130  cfv 5131  (class class class)co 5782  0cc0 7644  1c1 7645   + caddc 7647  cle 7825  cn 8744  cz 9078  cuz 9350  ...cfz 9821  seqcseq 10249  cli 11079  Σcsu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-recs 6210  df-frec 6296  df-seqfrec 10250  df-sumdc 11155
This theorem is referenced by:  mertenslem2  11337
  Copyright terms: Public domain W3C validator