| Step | Hyp | Ref
| Expression |
| 1 | | df-sumdc 11536 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
| 2 | | nfcv 2339 |
. . . . 5
⊢
Ⅎ𝑥ℤ |
| 3 | | nfsum.1 |
. . . . . . 7
⊢
Ⅎ𝑥𝐴 |
| 4 | | nfcv 2339 |
. . . . . . 7
⊢
Ⅎ𝑥(ℤ≥‘𝑚) |
| 5 | 3, 4 | nfss 3177 |
. . . . . 6
⊢
Ⅎ𝑥 𝐴 ⊆
(ℤ≥‘𝑚) |
| 6 | 3 | nfcri 2333 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑗 ∈ 𝐴 |
| 7 | 6 | nfdc 1673 |
. . . . . . 7
⊢
Ⅎ𝑥DECID 𝑗 ∈ 𝐴 |
| 8 | 4, 7 | nfralxy 2535 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 |
| 9 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑚 |
| 10 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑥
+ |
| 11 | 3 | nfcri 2333 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑛 ∈ 𝐴 |
| 12 | | nfcv 2339 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑛 |
| 13 | | nfsum.2 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐵 |
| 14 | 12, 13 | nfcsb 3122 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑛 / 𝑘⦌𝐵 |
| 15 | | nfcv 2339 |
. . . . . . . . . 10
⊢
Ⅎ𝑥0 |
| 16 | 11, 14, 15 | nfif 3590 |
. . . . . . . . 9
⊢
Ⅎ𝑥if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) |
| 17 | 2, 16 | nfmpt 4126 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
| 18 | 9, 10, 17 | nfseq 10566 |
. . . . . . 7
⊢
Ⅎ𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) |
| 19 | | nfcv 2339 |
. . . . . . 7
⊢
Ⅎ𝑥
⇝ |
| 20 | | nfcv 2339 |
. . . . . . 7
⊢
Ⅎ𝑥𝑧 |
| 21 | 18, 19, 20 | nfbr 4080 |
. . . . . 6
⊢
Ⅎ𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧 |
| 22 | 5, 8, 21 | nf3an 1580 |
. . . . 5
⊢
Ⅎ𝑥(𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) |
| 23 | 2, 22 | nfrexw 2536 |
. . . 4
⊢
Ⅎ𝑥∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) |
| 24 | | nfcv 2339 |
. . . . 5
⊢
Ⅎ𝑥ℕ |
| 25 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑓 |
| 26 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑥(1...𝑚) |
| 27 | 25, 26, 3 | nff1o 5505 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑓:(1...𝑚)–1-1-onto→𝐴 |
| 28 | | nfcv 2339 |
. . . . . . . . . 10
⊢
Ⅎ𝑥1 |
| 29 | | nfv 1542 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥 𝑛 ≤ 𝑚 |
| 30 | | nfcv 2339 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑓‘𝑛) |
| 31 | 30, 13 | nfcsb 3122 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋(𝑓‘𝑛) / 𝑘⦌𝐵 |
| 32 | 29, 31, 15 | nfif 3590 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) |
| 33 | 24, 32 | nfmpt 4126 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) |
| 34 | 28, 10, 33 | nfseq 10566 |
. . . . . . . . 9
⊢
Ⅎ𝑥seq1(
+ , (𝑛 ∈ ℕ
↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0))) |
| 35 | 34, 9 | nffv 5571 |
. . . . . . . 8
⊢
Ⅎ𝑥(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) |
| 36 | 35 | nfeq2 2351 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) |
| 37 | 27, 36 | nfan 1579 |
. . . . . 6
⊢
Ⅎ𝑥(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
| 38 | 37 | nfex 1651 |
. . . . 5
⊢
Ⅎ𝑥∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
| 39 | 24, 38 | nfrexw 2536 |
. . . 4
⊢
Ⅎ𝑥∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
| 40 | 23, 39 | nfor 1588 |
. . 3
⊢
Ⅎ𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) |
| 41 | 40 | nfiotaw 5224 |
. 2
⊢
Ⅎ𝑥(℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
| 42 | 1, 41 | nfcxfr 2336 |
1
⊢
Ⅎ𝑥Σ𝑘 ∈ 𝐴 𝐵 |