Step | Hyp | Ref
| Expression |
1 | | df-sumdc 11295 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
2 | | nfcv 2308 |
. . . . 5
⊢
Ⅎ𝑥ℤ |
3 | | nfsum.1 |
. . . . . . 7
⊢
Ⅎ𝑥𝐴 |
4 | | nfcv 2308 |
. . . . . . 7
⊢
Ⅎ𝑥(ℤ≥‘𝑚) |
5 | 3, 4 | nfss 3135 |
. . . . . 6
⊢
Ⅎ𝑥 𝐴 ⊆
(ℤ≥‘𝑚) |
6 | 3 | nfcri 2302 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑗 ∈ 𝐴 |
7 | 6 | nfdc 1647 |
. . . . . . 7
⊢
Ⅎ𝑥DECID 𝑗 ∈ 𝐴 |
8 | 4, 7 | nfralxy 2504 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 |
9 | | nfcv 2308 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑚 |
10 | | nfcv 2308 |
. . . . . . . 8
⊢
Ⅎ𝑥
+ |
11 | 3 | nfcri 2302 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑛 ∈ 𝐴 |
12 | | nfcv 2308 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑛 |
13 | | nfsum.2 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐵 |
14 | 12, 13 | nfcsb 3082 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑛 / 𝑘⦌𝐵 |
15 | | nfcv 2308 |
. . . . . . . . . 10
⊢
Ⅎ𝑥0 |
16 | 11, 14, 15 | nfif 3548 |
. . . . . . . . 9
⊢
Ⅎ𝑥if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) |
17 | 2, 16 | nfmpt 4074 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
18 | 9, 10, 17 | nfseq 10390 |
. . . . . . 7
⊢
Ⅎ𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) |
19 | | nfcv 2308 |
. . . . . . 7
⊢
Ⅎ𝑥
⇝ |
20 | | nfcv 2308 |
. . . . . . 7
⊢
Ⅎ𝑥𝑧 |
21 | 18, 19, 20 | nfbr 4028 |
. . . . . 6
⊢
Ⅎ𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧 |
22 | 5, 8, 21 | nf3an 1554 |
. . . . 5
⊢
Ⅎ𝑥(𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) |
23 | 2, 22 | nfrexxy 2505 |
. . . 4
⊢
Ⅎ𝑥∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) |
24 | | nfcv 2308 |
. . . . 5
⊢
Ⅎ𝑥ℕ |
25 | | nfcv 2308 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑓 |
26 | | nfcv 2308 |
. . . . . . . 8
⊢
Ⅎ𝑥(1...𝑚) |
27 | 25, 26, 3 | nff1o 5430 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑓:(1...𝑚)–1-1-onto→𝐴 |
28 | | nfcv 2308 |
. . . . . . . . . 10
⊢
Ⅎ𝑥1 |
29 | | nfv 1516 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥 𝑛 ≤ 𝑚 |
30 | | nfcv 2308 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑓‘𝑛) |
31 | 30, 13 | nfcsb 3082 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋(𝑓‘𝑛) / 𝑘⦌𝐵 |
32 | 29, 31, 15 | nfif 3548 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) |
33 | 24, 32 | nfmpt 4074 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) |
34 | 28, 10, 33 | nfseq 10390 |
. . . . . . . . 9
⊢
Ⅎ𝑥seq1(
+ , (𝑛 ∈ ℕ
↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0))) |
35 | 34, 9 | nffv 5496 |
. . . . . . . 8
⊢
Ⅎ𝑥(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) |
36 | 35 | nfeq2 2320 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) |
37 | 27, 36 | nfan 1553 |
. . . . . 6
⊢
Ⅎ𝑥(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
38 | 37 | nfex 1625 |
. . . . 5
⊢
Ⅎ𝑥∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
39 | 24, 38 | nfrexxy 2505 |
. . . 4
⊢
Ⅎ𝑥∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
40 | 23, 39 | nfor 1562 |
. . 3
⊢
Ⅎ𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) |
41 | 40 | nfiotaw 5157 |
. 2
⊢
Ⅎ𝑥(℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
42 | 1, 41 | nfcxfr 2305 |
1
⊢
Ⅎ𝑥Σ𝑘 ∈ 𝐴 𝐵 |