ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsum GIF version

Theorem nfsum 11834
Description: Bound-variable hypothesis builder for sum: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in Σ𝑘𝐴𝐵. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
nfsum.1 𝑥𝐴
nfsum.2 𝑥𝐵
Assertion
Ref Expression
nfsum 𝑥Σ𝑘𝐴 𝐵

Proof of Theorem nfsum
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sumdc 11831 . 2 Σ𝑘𝐴 𝐵 = (℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
2 nfcv 2352 . . . . 5 𝑥
3 nfsum.1 . . . . . . 7 𝑥𝐴
4 nfcv 2352 . . . . . . 7 𝑥(ℤ𝑚)
53, 4nfss 3197 . . . . . 6 𝑥 𝐴 ⊆ (ℤ𝑚)
63nfcri 2346 . . . . . . . 8 𝑥 𝑗𝐴
76nfdc 1685 . . . . . . 7 𝑥DECID 𝑗𝐴
84, 7nfralxy 2548 . . . . . 6 𝑥𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
9 nfcv 2352 . . . . . . . 8 𝑥𝑚
10 nfcv 2352 . . . . . . . 8 𝑥 +
113nfcri 2346 . . . . . . . . . 10 𝑥 𝑛𝐴
12 nfcv 2352 . . . . . . . . . . 11 𝑥𝑛
13 nfsum.2 . . . . . . . . . . 11 𝑥𝐵
1412, 13nfcsb 3142 . . . . . . . . . 10 𝑥𝑛 / 𝑘𝐵
15 nfcv 2352 . . . . . . . . . 10 𝑥0
1611, 14, 15nfif 3611 . . . . . . . . 9 𝑥if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
172, 16nfmpt 4155 . . . . . . . 8 𝑥(𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
189, 10, 17nfseq 10646 . . . . . . 7 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
19 nfcv 2352 . . . . . . 7 𝑥
20 nfcv 2352 . . . . . . 7 𝑥𝑧
2118, 19, 20nfbr 4109 . . . . . 6 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧
225, 8, 21nf3an 1592 . . . . 5 𝑥(𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧)
232, 22nfrexw 2549 . . . 4 𝑥𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧)
24 nfcv 2352 . . . . 5 𝑥
25 nfcv 2352 . . . . . . . 8 𝑥𝑓
26 nfcv 2352 . . . . . . . 8 𝑥(1...𝑚)
2725, 26, 3nff1o 5546 . . . . . . 7 𝑥 𝑓:(1...𝑚)–1-1-onto𝐴
28 nfcv 2352 . . . . . . . . . 10 𝑥1
29 nfv 1554 . . . . . . . . . . . 12 𝑥 𝑛𝑚
30 nfcv 2352 . . . . . . . . . . . . 13 𝑥(𝑓𝑛)
3130, 13nfcsb 3142 . . . . . . . . . . . 12 𝑥(𝑓𝑛) / 𝑘𝐵
3229, 31, 15nfif 3611 . . . . . . . . . . 11 𝑥if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)
3324, 32nfmpt 4155 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))
3428, 10, 33nfseq 10646 . . . . . . . . 9 𝑥seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))
3534, 9nffv 5613 . . . . . . . 8 𝑥(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
3635nfeq2 2364 . . . . . . 7 𝑥 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
3727, 36nfan 1591 . . . . . 6 𝑥(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3837nfex 1663 . . . . 5 𝑥𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3924, 38nfrexw 2549 . . . 4 𝑥𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
4023, 39nfor 1600 . . 3 𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
4140nfiotaw 5258 . 2 𝑥(℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
421, 41nfcxfr 2349 1 𝑥Σ𝑘𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 104  wo 712  DECID wdc 838  w3a 983   = wceq 1375  wex 1518  wcel 2180  wnfc 2339  wral 2488  wrex 2489  csb 3104  wss 3177  ifcif 3582   class class class wbr 4062  cmpt 4124  cio 5252  1-1-ontowf1o 5293  cfv 5294  (class class class)co 5974  0cc0 7967  1c1 7968   + caddc 7970  cle 8150  cn 9078  cz 9414  cuz 9690  ...cfz 10172  seqcseq 10636  cli 11755  Σcsu 11830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-recs 6421  df-frec 6507  df-seqfrec 10637  df-sumdc 11831
This theorem is referenced by:  fsum2dlemstep  11911  fisumcom2  11915  fsumiun  11954  fsumcncntop  15206  dvmptfsum  15364
  Copyright terms: Public domain W3C validator