ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsum GIF version

Theorem nfsum 11119
Description: Bound-variable hypothesis builder for sum: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in Σ𝑘𝐴𝐵. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
nfsum.1 𝑥𝐴
nfsum.2 𝑥𝐵
Assertion
Ref Expression
nfsum 𝑥Σ𝑘𝐴 𝐵

Proof of Theorem nfsum
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sumdc 11116 . 2 Σ𝑘𝐴 𝐵 = (℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
2 nfcv 2279 . . . . 5 𝑥
3 nfsum.1 . . . . . . 7 𝑥𝐴
4 nfcv 2279 . . . . . . 7 𝑥(ℤ𝑚)
53, 4nfss 3085 . . . . . 6 𝑥 𝐴 ⊆ (ℤ𝑚)
63nfcri 2273 . . . . . . . 8 𝑥 𝑗𝐴
76nfdc 1637 . . . . . . 7 𝑥DECID 𝑗𝐴
84, 7nfralxy 2469 . . . . . 6 𝑥𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
9 nfcv 2279 . . . . . . . 8 𝑥𝑚
10 nfcv 2279 . . . . . . . 8 𝑥 +
113nfcri 2273 . . . . . . . . . 10 𝑥 𝑛𝐴
12 nfcv 2279 . . . . . . . . . . 11 𝑥𝑛
13 nfsum.2 . . . . . . . . . . 11 𝑥𝐵
1412, 13nfcsb 3032 . . . . . . . . . 10 𝑥𝑛 / 𝑘𝐵
15 nfcv 2279 . . . . . . . . . 10 𝑥0
1611, 14, 15nfif 3495 . . . . . . . . 9 𝑥if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
172, 16nfmpt 4015 . . . . . . . 8 𝑥(𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
189, 10, 17nfseq 10221 . . . . . . 7 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
19 nfcv 2279 . . . . . . 7 𝑥
20 nfcv 2279 . . . . . . 7 𝑥𝑧
2118, 19, 20nfbr 3969 . . . . . 6 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧
225, 8, 21nf3an 1545 . . . . 5 𝑥(𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧)
232, 22nfrexxy 2470 . . . 4 𝑥𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧)
24 nfcv 2279 . . . . 5 𝑥
25 nfcv 2279 . . . . . . . 8 𝑥𝑓
26 nfcv 2279 . . . . . . . 8 𝑥(1...𝑚)
2725, 26, 3nff1o 5358 . . . . . . 7 𝑥 𝑓:(1...𝑚)–1-1-onto𝐴
28 nfcv 2279 . . . . . . . . . 10 𝑥1
29 nfv 1508 . . . . . . . . . . . 12 𝑥 𝑛𝑚
30 nfcv 2279 . . . . . . . . . . . . 13 𝑥(𝑓𝑛)
3130, 13nfcsb 3032 . . . . . . . . . . . 12 𝑥(𝑓𝑛) / 𝑘𝐵
3229, 31, 15nfif 3495 . . . . . . . . . . 11 𝑥if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)
3324, 32nfmpt 4015 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))
3428, 10, 33nfseq 10221 . . . . . . . . 9 𝑥seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))
3534, 9nffv 5424 . . . . . . . 8 𝑥(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
3635nfeq2 2291 . . . . . . 7 𝑥 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
3727, 36nfan 1544 . . . . . 6 𝑥(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3837nfex 1616 . . . . 5 𝑥𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3924, 38nfrexxy 2470 . . . 4 𝑥𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
4023, 39nfor 1553 . . 3 𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
4140nfiotaw 5087 . 2 𝑥(℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
421, 41nfcxfr 2276 1 𝑥Σ𝑘𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 103  wo 697  DECID wdc 819  w3a 962   = wceq 1331  wex 1468  wcel 1480  wnfc 2266  wral 2414  wrex 2415  csb 2998  wss 3066  ifcif 3469   class class class wbr 3924  cmpt 3984  cio 5081  1-1-ontowf1o 5117  cfv 5118  (class class class)co 5767  0cc0 7613  1c1 7614   + caddc 7616  cle 7794  cn 8713  cz 9047  cuz 9319  ...cfz 9783  seqcseq 10211  cli 11040  Σcsu 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-if 3470  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-recs 6195  df-frec 6281  df-seqfrec 10212  df-sumdc 11116
This theorem is referenced by:  fsum2dlemstep  11196  fisumcom2  11200  fsumiun  11239  fsumcncntop  12714
  Copyright terms: Public domain W3C validator