ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsum GIF version

Theorem nfsum 11298
Description: Bound-variable hypothesis builder for sum: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in Σ𝑘𝐴𝐵. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
nfsum.1 𝑥𝐴
nfsum.2 𝑥𝐵
Assertion
Ref Expression
nfsum 𝑥Σ𝑘𝐴 𝐵

Proof of Theorem nfsum
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sumdc 11295 . 2 Σ𝑘𝐴 𝐵 = (℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
2 nfcv 2308 . . . . 5 𝑥
3 nfsum.1 . . . . . . 7 𝑥𝐴
4 nfcv 2308 . . . . . . 7 𝑥(ℤ𝑚)
53, 4nfss 3135 . . . . . 6 𝑥 𝐴 ⊆ (ℤ𝑚)
63nfcri 2302 . . . . . . . 8 𝑥 𝑗𝐴
76nfdc 1647 . . . . . . 7 𝑥DECID 𝑗𝐴
84, 7nfralxy 2504 . . . . . 6 𝑥𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
9 nfcv 2308 . . . . . . . 8 𝑥𝑚
10 nfcv 2308 . . . . . . . 8 𝑥 +
113nfcri 2302 . . . . . . . . . 10 𝑥 𝑛𝐴
12 nfcv 2308 . . . . . . . . . . 11 𝑥𝑛
13 nfsum.2 . . . . . . . . . . 11 𝑥𝐵
1412, 13nfcsb 3082 . . . . . . . . . 10 𝑥𝑛 / 𝑘𝐵
15 nfcv 2308 . . . . . . . . . 10 𝑥0
1611, 14, 15nfif 3548 . . . . . . . . 9 𝑥if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
172, 16nfmpt 4074 . . . . . . . 8 𝑥(𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
189, 10, 17nfseq 10390 . . . . . . 7 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
19 nfcv 2308 . . . . . . 7 𝑥
20 nfcv 2308 . . . . . . 7 𝑥𝑧
2118, 19, 20nfbr 4028 . . . . . 6 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧
225, 8, 21nf3an 1554 . . . . 5 𝑥(𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧)
232, 22nfrexxy 2505 . . . 4 𝑥𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧)
24 nfcv 2308 . . . . 5 𝑥
25 nfcv 2308 . . . . . . . 8 𝑥𝑓
26 nfcv 2308 . . . . . . . 8 𝑥(1...𝑚)
2725, 26, 3nff1o 5430 . . . . . . 7 𝑥 𝑓:(1...𝑚)–1-1-onto𝐴
28 nfcv 2308 . . . . . . . . . 10 𝑥1
29 nfv 1516 . . . . . . . . . . . 12 𝑥 𝑛𝑚
30 nfcv 2308 . . . . . . . . . . . . 13 𝑥(𝑓𝑛)
3130, 13nfcsb 3082 . . . . . . . . . . . 12 𝑥(𝑓𝑛) / 𝑘𝐵
3229, 31, 15nfif 3548 . . . . . . . . . . 11 𝑥if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)
3324, 32nfmpt 4074 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))
3428, 10, 33nfseq 10390 . . . . . . . . 9 𝑥seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))
3534, 9nffv 5496 . . . . . . . 8 𝑥(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
3635nfeq2 2320 . . . . . . 7 𝑥 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
3727, 36nfan 1553 . . . . . 6 𝑥(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3837nfex 1625 . . . . 5 𝑥𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
3924, 38nfrexxy 2505 . . . 4 𝑥𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
4023, 39nfor 1562 . . 3 𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
4140nfiotaw 5157 . 2 𝑥(℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
421, 41nfcxfr 2305 1 𝑥Σ𝑘𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 103  wo 698  DECID wdc 824  w3a 968   = wceq 1343  wex 1480  wcel 2136  wnfc 2295  wral 2444  wrex 2445  csb 3045  wss 3116  ifcif 3520   class class class wbr 3982  cmpt 4043  cio 5151  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  0cc0 7753  1c1 7754   + caddc 7756  cle 7934  cn 8857  cz 9191  cuz 9466  ...cfz 9944  seqcseq 10380  cli 11219  Σcsu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-recs 6273  df-frec 6359  df-seqfrec 10381  df-sumdc 11295
This theorem is referenced by:  fsum2dlemstep  11375  fisumcom2  11379  fsumiun  11418  fsumcncntop  13196
  Copyright terms: Public domain W3C validator