![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfdisjv | GIF version |
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
nfdisjv.1 | ⊢ Ⅎ𝑦𝐴 |
nfdisjv.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfdisjv | ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 3846 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
2 | nfcv 2235 | . . . . . 6 ⊢ Ⅎ𝑦𝑥 | |
3 | nfdisjv.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
4 | 2, 3 | nfel 2244 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
5 | nfdisjv.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
6 | 5 | nfcri 2229 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
7 | 4, 6 | nfan 1509 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
8 | 7 | nfmo 1975 | . . 3 ⊢ Ⅎ𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
9 | 8 | nfal 1520 | . 2 ⊢ Ⅎ𝑦∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
10 | 1, 9 | nfxfr 1415 | 1 ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∀wal 1294 Ⅎwnf 1401 ∈ wcel 1445 ∃*wmo 1956 Ⅎwnfc 2222 Disj wdisj 3844 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-cleq 2088 df-clel 2091 df-nfc 2224 df-rmo 2378 df-disj 3845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |