Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfdisjv | GIF version |
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
nfdisjv.1 | ⊢ Ⅎ𝑦𝐴 |
nfdisjv.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfdisjv | ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 3961 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
2 | nfcv 2308 | . . . . . 6 ⊢ Ⅎ𝑦𝑥 | |
3 | nfdisjv.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
4 | 2, 3 | nfel 2317 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
5 | nfdisjv.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
6 | 5 | nfcri 2302 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
7 | 4, 6 | nfan 1553 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
8 | 7 | nfmo 2034 | . . 3 ⊢ Ⅎ𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
9 | 8 | nfal 1564 | . 2 ⊢ Ⅎ𝑦∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
10 | 1, 9 | nfxfr 1462 | 1 ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∀wal 1341 Ⅎwnf 1448 ∃*wmo 2015 ∈ wcel 2136 Ⅎwnfc 2295 Disj wdisj 3959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rmo 2452 df-disj 3960 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |