ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdisjv GIF version

Theorem nfdisjv 3856
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Jim Kingdon, 19-Aug-2018.)
Hypotheses
Ref Expression
nfdisjv.1 𝑦𝐴
nfdisjv.2 𝑦𝐵
Assertion
Ref Expression
nfdisjv 𝑦Disj 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfdisjv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 3846 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥(𝑥𝐴𝑧𝐵))
2 nfcv 2235 . . . . . 6 𝑦𝑥
3 nfdisjv.1 . . . . . 6 𝑦𝐴
42, 3nfel 2244 . . . . 5 𝑦 𝑥𝐴
5 nfdisjv.2 . . . . . 6 𝑦𝐵
65nfcri 2229 . . . . 5 𝑦 𝑧𝐵
74, 6nfan 1509 . . . 4 𝑦(𝑥𝐴𝑧𝐵)
87nfmo 1975 . . 3 𝑦∃*𝑥(𝑥𝐴𝑧𝐵)
98nfal 1520 . 2 𝑦𝑧∃*𝑥(𝑥𝐴𝑧𝐵)
101, 9nfxfr 1415 1 𝑦Disj 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 103  wal 1294  wnf 1401  wcel 1445  ∃*wmo 1956  wnfc 2222  Disj wdisj 3844
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rmo 2378  df-disj 3845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator