ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdisjv GIF version

Theorem nfdisjv 3978
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Jim Kingdon, 19-Aug-2018.)
Hypotheses
Ref Expression
nfdisjv.1 𝑦𝐴
nfdisjv.2 𝑦𝐵
Assertion
Ref Expression
nfdisjv 𝑦Disj 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfdisjv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 3968 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥(𝑥𝐴𝑧𝐵))
2 nfcv 2312 . . . . . 6 𝑦𝑥
3 nfdisjv.1 . . . . . 6 𝑦𝐴
42, 3nfel 2321 . . . . 5 𝑦 𝑥𝐴
5 nfdisjv.2 . . . . . 6 𝑦𝐵
65nfcri 2306 . . . . 5 𝑦 𝑧𝐵
74, 6nfan 1558 . . . 4 𝑦(𝑥𝐴𝑧𝐵)
87nfmo 2039 . . 3 𝑦∃*𝑥(𝑥𝐴𝑧𝐵)
98nfal 1569 . 2 𝑦𝑧∃*𝑥(𝑥𝐴𝑧𝐵)
101, 9nfxfr 1467 1 𝑦Disj 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 103  wal 1346  wnf 1453  ∃*wmo 2020  wcel 2141  wnfc 2299  Disj wdisj 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rmo 2456  df-disj 3967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator