| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfdisjv | GIF version | ||
| Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Jim Kingdon, 19-Aug-2018.) |
| Ref | Expression |
|---|---|
| nfdisjv.1 | ⊢ Ⅎ𝑦𝐴 |
| nfdisjv.2 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| nfdisjv | ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisj2 4023 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
| 2 | nfcv 2348 | . . . . . 6 ⊢ Ⅎ𝑦𝑥 | |
| 3 | nfdisjv.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 4 | 2, 3 | nfel 2357 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 5 | nfdisjv.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
| 6 | 5 | nfcri 2342 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 7 | 4, 6 | nfan 1588 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 8 | 7 | nfmo 2074 | . . 3 ⊢ Ⅎ𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 9 | 8 | nfal 1599 | . 2 ⊢ Ⅎ𝑦∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 10 | 1, 9 | nfxfr 1497 | 1 ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∀wal 1371 Ⅎwnf 1483 ∃*wmo 2055 ∈ wcel 2176 Ⅎwnfc 2335 Disj wdisj 4021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rmo 2492 df-disj 4022 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |