![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfdisjv | GIF version |
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
nfdisjv.1 | ⊢ Ⅎ𝑦𝐴 |
nfdisjv.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfdisjv | ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 3983 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
2 | nfcv 2319 | . . . . . 6 ⊢ Ⅎ𝑦𝑥 | |
3 | nfdisjv.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
4 | 2, 3 | nfel 2328 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
5 | nfdisjv.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
6 | 5 | nfcri 2313 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
7 | 4, 6 | nfan 1565 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
8 | 7 | nfmo 2046 | . . 3 ⊢ Ⅎ𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
9 | 8 | nfal 1576 | . 2 ⊢ Ⅎ𝑦∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
10 | 1, 9 | nfxfr 1474 | 1 ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∀wal 1351 Ⅎwnf 1460 ∃*wmo 2027 ∈ wcel 2148 Ⅎwnfc 2306 Disj wdisj 3981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rmo 2463 df-disj 3982 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |