ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdisjv GIF version

Theorem nfdisjv 4047
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Jim Kingdon, 19-Aug-2018.)
Hypotheses
Ref Expression
nfdisjv.1 𝑦𝐴
nfdisjv.2 𝑦𝐵
Assertion
Ref Expression
nfdisjv 𝑦Disj 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfdisjv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 4037 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥(𝑥𝐴𝑧𝐵))
2 nfcv 2350 . . . . . 6 𝑦𝑥
3 nfdisjv.1 . . . . . 6 𝑦𝐴
42, 3nfel 2359 . . . . 5 𝑦 𝑥𝐴
5 nfdisjv.2 . . . . . 6 𝑦𝐵
65nfcri 2344 . . . . 5 𝑦 𝑧𝐵
74, 6nfan 1589 . . . 4 𝑦(𝑥𝐴𝑧𝐵)
87nfmo 2075 . . 3 𝑦∃*𝑥(𝑥𝐴𝑧𝐵)
98nfal 1600 . 2 𝑦𝑧∃*𝑥(𝑥𝐴𝑧𝐵)
101, 9nfxfr 1498 1 𝑦Disj 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 104  wal 1371  wnf 1484  ∃*wmo 2056  wcel 2178  wnfc 2337  Disj wdisj 4035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rmo 2494  df-disj 4036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator