| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > invdisj | GIF version | ||
| Description: If there is a function 𝐶(𝑦) such that 𝐶(𝑦) = 𝑥 for all 𝑦 ∈ 𝐵(𝑥), then the sets 𝐵(𝑥) for distinct 𝑥 ∈ 𝐴 are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016.) |
| Ref | Expression |
|---|---|
| invdisj | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → Disj 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra2xy 2539 | . . 3 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 | |
| 2 | df-ral 2480 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 = 𝑥)) | |
| 3 | rsp 2544 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → (𝑦 ∈ 𝐵 → 𝐶 = 𝑥)) | |
| 4 | eqcom 2198 | . . . . . . . . 9 ⊢ (𝐶 = 𝑥 ↔ 𝑥 = 𝐶) | |
| 5 | 3, 4 | imbitrdi 161 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → (𝑦 ∈ 𝐵 → 𝑥 = 𝐶)) |
| 6 | 5 | imim2i 12 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 = 𝑥) → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑥 = 𝐶))) |
| 7 | 6 | impd 254 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 = 𝑥) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐶)) |
| 8 | 7 | alimi 1469 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 = 𝑥) → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐶)) |
| 9 | 2, 8 | sylbi 121 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐶)) |
| 10 | mo2icl 2943 | . . . 4 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐶) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 11 | 9, 10 | syl 14 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 12 | 1, 11 | alrimi 1536 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 13 | dfdisj2 4013 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 14 | 12, 13 | sylibr 134 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → Disj 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃*wmo 2046 ∈ wcel 2167 ∀wral 2475 Disj wdisj 4011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rmo 2483 df-v 2765 df-disj 4012 |
| This theorem is referenced by: phisum 12434 lgsquadlem1 15402 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |